Spaces:
Running
on
Zero
Running
on
Zero
import re | |
from abc import abstractmethod | |
from contextlib import contextmanager | |
from typing import Any, Dict, Tuple, Union | |
import pytorch_lightning as pl | |
import torch | |
from omegaconf import ListConfig | |
from packaging import version | |
from safetensors.torch import load_file as load_safetensors | |
from ..modules.diffusionmodules.model import Decoder, Encoder | |
from ..modules.distributions.distributions import DiagonalGaussianDistribution | |
from ..modules.ema import LitEma | |
from ..util import default, get_obj_from_str, instantiate_from_config | |
class AbstractAutoencoder(pl.LightningModule): | |
""" | |
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, | |
unCLIP models, etc. Hence, it is fairly general, and specific features | |
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses. | |
""" | |
def __init__( | |
self, | |
ema_decay: Union[None, float] = None, | |
monitor: Union[None, str] = None, | |
input_key: str = "jpg", | |
ckpt_path: Union[None, str] = None, | |
ignore_keys: Union[Tuple, list, ListConfig] = (), | |
): | |
super().__init__() | |
self.input_key = input_key | |
self.use_ema = ema_decay is not None | |
if monitor is not None: | |
self.monitor = monitor | |
if self.use_ema: | |
self.model_ema = LitEma(self, decay=ema_decay) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
if version.parse(torch.__version__) >= version.parse("2.0.0"): | |
self.automatic_optimization = False | |
def init_from_ckpt( | |
self, path: str, ignore_keys: Union[Tuple, list, ListConfig] = tuple() | |
) -> None: | |
if path.endswith("ckpt"): | |
sd = torch.load(path, map_location="cpu")["state_dict"] | |
elif path.endswith("safetensors"): | |
sd = load_safetensors(path) | |
else: | |
raise NotImplementedError | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if re.match(ik, k): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = self.load_state_dict(sd, strict=False) | |
print( | |
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" | |
) | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
def get_input(self, batch) -> Any: | |
raise NotImplementedError() | |
def on_train_batch_end(self, *args, **kwargs): | |
# for EMA computation | |
if self.use_ema: | |
self.model_ema(self) | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.parameters()) | |
self.model_ema.copy_to(self) | |
if context is not None: | |
print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights") | |
def encode(self, *args, **kwargs) -> torch.Tensor: | |
raise NotImplementedError("encode()-method of abstract base class called") | |
def decode(self, *args, **kwargs) -> torch.Tensor: | |
raise NotImplementedError("decode()-method of abstract base class called") | |
def instantiate_optimizer_from_config(self, params, lr, cfg): | |
print(f"loading >>> {cfg['target']} <<< optimizer from config") | |
return get_obj_from_str(cfg["target"])( | |
params, lr=lr, **cfg.get("params", dict()) | |
) | |
def configure_optimizers(self) -> Any: | |
raise NotImplementedError() | |
class AutoencodingEngine(AbstractAutoencoder): | |
""" | |
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL | |
(we also restore them explicitly as special cases for legacy reasons). | |
Regularizations such as KL or VQ are moved to the regularizer class. | |
""" | |
def __init__( | |
self, | |
*args, | |
encoder_config: Dict, | |
decoder_config: Dict, | |
loss_config: Dict, | |
regularizer_config: Dict, | |
optimizer_config: Union[Dict, None] = None, | |
lr_g_factor: float = 1.0, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
# todo: add options to freeze encoder/decoder | |
self.encoder = instantiate_from_config(encoder_config) | |
self.decoder = instantiate_from_config(decoder_config) | |
self.loss = instantiate_from_config(loss_config) | |
self.regularization = instantiate_from_config(regularizer_config) | |
self.optimizer_config = default( | |
optimizer_config, {"target": "torch.optim.Adam"} | |
) | |
self.lr_g_factor = lr_g_factor | |
def get_input(self, batch: Dict) -> torch.Tensor: | |
# assuming unified data format, dataloader returns a dict. | |
# image tensors should be scaled to -1 ... 1 and in channels-first format (e.g., bchw instead if bhwc) | |
return batch[self.input_key] | |
def get_autoencoder_params(self) -> list: | |
params = ( | |
list(self.encoder.parameters()) | |
+ list(self.decoder.parameters()) | |
+ list(self.regularization.get_trainable_parameters()) | |
+ list(self.loss.get_trainable_autoencoder_parameters()) | |
) | |
return params | |
def get_discriminator_params(self) -> list: | |
params = list(self.loss.get_trainable_parameters()) # e.g., discriminator | |
return params | |
def get_last_layer(self): | |
return self.decoder.get_last_layer() | |
def encode(self, x: Any, return_reg_log: bool = False) -> Any: | |
z = self.encoder(x) | |
z, reg_log = self.regularization(z) | |
if return_reg_log: | |
return z, reg_log | |
return z | |
def decode(self, z: Any) -> torch.Tensor: | |
x = self.decoder(z) | |
return x | |
def forward(self, x: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
z, reg_log = self.encode(x, return_reg_log=True) | |
dec = self.decode(z) | |
return z, dec, reg_log | |
def training_step(self, batch, batch_idx, optimizer_idx) -> Any: | |
x = self.get_input(batch) | |
z, xrec, regularization_log = self(x) | |
if optimizer_idx == 0: | |
# autoencode | |
aeloss, log_dict_ae = self.loss( | |
regularization_log, | |
x, | |
xrec, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log_dict( | |
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True | |
) | |
return aeloss | |
if optimizer_idx == 1: | |
# discriminator | |
discloss, log_dict_disc = self.loss( | |
regularization_log, | |
x, | |
xrec, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log_dict( | |
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True | |
) | |
return discloss | |
def validation_step(self, batch, batch_idx) -> Dict: | |
log_dict = self._validation_step(batch, batch_idx) | |
with self.ema_scope(): | |
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") | |
log_dict.update(log_dict_ema) | |
return log_dict | |
def _validation_step(self, batch, batch_idx, postfix="") -> Dict: | |
x = self.get_input(batch) | |
z, xrec, regularization_log = self(x) | |
aeloss, log_dict_ae = self.loss( | |
regularization_log, | |
x, | |
xrec, | |
0, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val" + postfix, | |
) | |
discloss, log_dict_disc = self.loss( | |
regularization_log, | |
x, | |
xrec, | |
1, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val" + postfix, | |
) | |
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"]) | |
log_dict_ae.update(log_dict_disc) | |
self.log_dict(log_dict_ae) | |
return log_dict_ae | |
def configure_optimizers(self) -> Any: | |
ae_params = self.get_autoencoder_params() | |
disc_params = self.get_discriminator_params() | |
opt_ae = self.instantiate_optimizer_from_config( | |
ae_params, | |
default(self.lr_g_factor, 1.0) * self.learning_rate, | |
self.optimizer_config, | |
) | |
opt_disc = self.instantiate_optimizer_from_config( | |
disc_params, self.learning_rate, self.optimizer_config | |
) | |
return [opt_ae, opt_disc], [] | |
def log_images(self, batch: Dict, **kwargs) -> Dict: | |
log = dict() | |
x = self.get_input(batch) | |
_, xrec, _ = self(x) | |
log["inputs"] = x | |
log["reconstructions"] = xrec | |
with self.ema_scope(): | |
_, xrec_ema, _ = self(x) | |
log["reconstructions_ema"] = xrec_ema | |
return log | |
class AutoencoderKL(AutoencodingEngine): | |
def __init__(self, embed_dim: int, **kwargs): | |
ddconfig = kwargs.pop("ddconfig") | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", ()) | |
super().__init__( | |
encoder_config={"target": "torch.nn.Identity"}, | |
decoder_config={"target": "torch.nn.Identity"}, | |
regularizer_config={"target": "torch.nn.Identity"}, | |
loss_config=kwargs.pop("lossconfig"), | |
**kwargs, | |
) | |
assert ddconfig["double_z"] | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
def encode(self, x): | |
assert ( | |
not self.training | |
), f"{self.__class__.__name__} only supports inference currently" | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z, **decoder_kwargs): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z, **decoder_kwargs) | |
return dec | |
class AutoencoderKLInferenceWrapper(AutoencoderKL): | |
def encode(self, x): | |
return super().encode(x).sample() | |
class IdentityFirstStage(AbstractAutoencoder): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def get_input(self, x: Any) -> Any: | |
return x | |
def encode(self, x: Any, *args, **kwargs) -> Any: | |
return x | |
def decode(self, x: Any, *args, **kwargs) -> Any: | |
return x | |