Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from sgm.models.diffusion import DiffusionEngine | |
from sgm.util import instantiate_from_config | |
import copy | |
from sgm.modules.distributions.distributions import DiagonalGaussianDistribution | |
import random | |
from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization | |
from pytorch_lightning import seed_everything | |
from torch.nn.functional import interpolate | |
from SUPIR.utils.tilevae import VAEHook | |
class SUPIRModel(DiffusionEngine): | |
def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
control_model = instantiate_from_config(control_stage_config) | |
self.model.load_control_model(control_model) | |
self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder) | |
self.sampler_config = kwargs['sampler_config'] | |
assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16']) | |
if ae_dtype == 'fp32': | |
ae_dtype = torch.float32 | |
elif ae_dtype == 'fp16': | |
raise RuntimeError('fp16 cause NaN in AE') | |
elif ae_dtype == 'bf16': | |
ae_dtype = torch.bfloat16 | |
if diffusion_dtype == 'fp32': | |
diffusion_dtype = torch.float32 | |
elif diffusion_dtype == 'fp16': | |
diffusion_dtype = torch.float16 | |
elif diffusion_dtype == 'bf16': | |
diffusion_dtype = torch.bfloat16 | |
self.ae_dtype = ae_dtype | |
self.model.dtype = diffusion_dtype | |
self.p_p = p_p | |
self.n_p = n_p | |
def encode_first_stage(self, x): | |
with torch.autocast("cuda", dtype=self.ae_dtype): | |
z = self.first_stage_model.encode(x) | |
z = self.scale_factor * z | |
return z | |
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False): | |
with torch.autocast("cuda", dtype=self.ae_dtype): | |
if is_stage1: | |
h = self.first_stage_model.denoise_encoder_s1(x) | |
else: | |
h = self.first_stage_model.denoise_encoder(x) | |
moments = self.first_stage_model.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if use_sample: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
z = self.scale_factor * z | |
return z | |
def decode_first_stage(self, z): | |
z = 1.0 / self.scale_factor * z | |
with torch.autocast("cuda", dtype=self.ae_dtype): | |
out = self.first_stage_model.decode(z) | |
return out.float() | |
def batchify_denoise(self, x, is_stage1=False): | |
''' | |
[N, C, H, W], [-1, 1], RGB | |
''' | |
x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1) | |
return self.decode_first_stage(x) | |
def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1, | |
num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False, | |
cfg_scale_start=1.0, control_scale_start=0.0, **kwargs): | |
''' | |
[N, C], [-1, 1], RGB | |
''' | |
assert len(x) == len(p) | |
assert color_fix_type in ['Wavelet', 'AdaIn', 'None'] | |
N = len(x) | |
if num_samples > 1: | |
assert N == 1 | |
N = num_samples | |
x = x.repeat(N, 1, 1, 1) | |
p = p * N | |
if p_p == 'default': | |
p_p = self.p_p | |
if n_p == 'default': | |
n_p = self.n_p | |
self.sampler_config.params.num_steps = num_steps | |
if use_linear_CFG: | |
self.sampler_config.params.guider_config.params.scale_min = cfg_scale | |
self.sampler_config.params.guider_config.params.scale = cfg_scale_start | |
else: | |
self.sampler_config.params.guider_config.params.scale_min = cfg_scale | |
self.sampler_config.params.guider_config.params.scale = cfg_scale | |
self.sampler_config.params.restore_cfg = restoration_scale | |
self.sampler_config.params.s_churn = s_churn | |
self.sampler_config.params.s_noise = s_noise | |
self.sampler = instantiate_from_config(self.sampler_config) | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
_z = self.encode_first_stage_with_denoise(x, use_sample=False) | |
x_stage1 = self.decode_first_stage(_z) | |
z_stage1 = self.encode_first_stage(x_stage1) | |
c, uc = self.prepare_condition(_z, p, p_p, n_p, N) | |
denoiser = lambda input, sigma, c, control_scale: self.denoiser( | |
self.model, input, sigma, c, control_scale, **kwargs | |
) | |
noised_z = torch.randn_like(_z).to(_z.device) | |
_samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale, | |
use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start) | |
samples = self.decode_first_stage(_samples) | |
if color_fix_type == 'Wavelet': | |
samples = wavelet_reconstruction(samples, x_stage1) | |
elif color_fix_type == 'AdaIn': | |
samples = adaptive_instance_normalization(samples, x_stage1) | |
return samples | |
def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64): | |
self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward | |
self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward | |
self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward | |
self.first_stage_model.denoise_encoder.forward = VAEHook( | |
self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False, | |
fast_encoder=False, color_fix=False, to_gpu=True) | |
self.first_stage_model.encoder.forward = VAEHook( | |
self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False, | |
fast_encoder=False, color_fix=False, to_gpu=True) | |
self.first_stage_model.decoder.forward = VAEHook( | |
self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False, | |
fast_encoder=False, color_fix=False, to_gpu=True) | |
def prepare_condition(self, _z, p, p_p, n_p, N): | |
batch = {} | |
batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device) | |
batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device) | |
batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device) | |
batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device) | |
batch['control'] = _z | |
batch_uc = copy.deepcopy(batch) | |
batch_uc['txt'] = [n_p for _ in p] | |
if not isinstance(p[0], list): | |
batch['txt'] = [''.join([_p, p_p]) for _p in p] | |
with torch.cuda.amp.autocast(dtype=self.ae_dtype): | |
c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc) | |
else: | |
assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.' | |
p_tiles = p[0] | |
c = [] | |
for i, p_tile in enumerate(p_tiles): | |
batch['txt'] = [''.join([p_tile, p_p])] | |
with torch.cuda.amp.autocast(dtype=self.ae_dtype): | |
if i == 0: | |
_c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc) | |
else: | |
_c, _ = self.conditioner.get_unconditional_conditioning(batch, None) | |
c.append(_c) | |
return c, uc | |
if __name__ == '__main__': | |
from SUPIR.util import create_model, load_state_dict | |
model = create_model('../../options/dev/SUPIR_paper_version.yaml') | |
SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors' | |
SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt' | |
model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False) | |
model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False) | |
model = model.cuda() | |
x = torch.randn(1, 3, 512, 512).cuda() | |
p = ['a professional, detailed, high-quality photo'] | |
samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1) | |