|
|
|
|
|
import einops
|
|
import torch
|
|
import torch as th
|
|
import torch.nn as nn
|
|
from einops import rearrange, repeat
|
|
|
|
from sgm.modules.diffusionmodules.util import (
|
|
avg_pool_nd,
|
|
checkpoint,
|
|
conv_nd,
|
|
linear,
|
|
normalization,
|
|
timestep_embedding,
|
|
zero_module,
|
|
)
|
|
|
|
from sgm.modules.diffusionmodules.openaimodel import Downsample, Upsample, UNetModel, Timestep, \
|
|
TimestepEmbedSequential, ResBlock, AttentionBlock, TimestepBlock
|
|
from sgm.modules.attention import SpatialTransformer, MemoryEfficientCrossAttention, CrossAttention
|
|
from sgm.util import default, log_txt_as_img, exists, instantiate_from_config
|
|
import re
|
|
import torch
|
|
from functools import partial
|
|
|
|
|
|
try:
|
|
import xformers
|
|
import xformers.ops
|
|
XFORMERS_IS_AVAILBLE = True
|
|
except:
|
|
XFORMERS_IS_AVAILBLE = False
|
|
|
|
|
|
|
|
def convert_module_to_f16(x):
|
|
pass
|
|
|
|
|
|
def convert_module_to_f32(x):
|
|
pass
|
|
|
|
|
|
class ZeroConv(nn.Module):
|
|
def __init__(self, label_nc, norm_nc, mask=False):
|
|
super().__init__()
|
|
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
|
|
self.mask = mask
|
|
|
|
def forward(self, c, h, h_ori=None):
|
|
|
|
if not self.mask:
|
|
h = h + self.zero_conv(c)
|
|
else:
|
|
h = h + self.zero_conv(c) * torch.zeros_like(h)
|
|
if h_ori is not None:
|
|
h = th.cat([h_ori, h], dim=1)
|
|
return h
|
|
|
|
|
|
class ZeroSFT(nn.Module):
|
|
def __init__(self, label_nc, norm_nc, concat_channels=0, norm=True, mask=False):
|
|
super().__init__()
|
|
|
|
|
|
ks = 3
|
|
pw = ks // 2
|
|
|
|
self.norm = norm
|
|
if self.norm:
|
|
self.param_free_norm = normalization(norm_nc + concat_channels)
|
|
else:
|
|
self.param_free_norm = nn.Identity()
|
|
|
|
nhidden = 128
|
|
|
|
self.mlp_shared = nn.Sequential(
|
|
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
|
|
nn.SiLU()
|
|
)
|
|
self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
|
|
self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
|
|
|
|
|
|
|
|
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
|
|
self.pre_concat = bool(concat_channels != 0)
|
|
self.mask = mask
|
|
|
|
def forward(self, c, h, h_ori=None, control_scale=1):
|
|
assert self.mask is False
|
|
if h_ori is not None and self.pre_concat:
|
|
h_raw = th.cat([h_ori, h], dim=1)
|
|
else:
|
|
h_raw = h
|
|
|
|
if self.mask:
|
|
h = h + self.zero_conv(c) * torch.zeros_like(h)
|
|
else:
|
|
h = h + self.zero_conv(c)
|
|
if h_ori is not None and self.pre_concat:
|
|
h = th.cat([h_ori, h], dim=1)
|
|
actv = self.mlp_shared(c)
|
|
gamma = self.zero_mul(actv)
|
|
beta = self.zero_add(actv)
|
|
if self.mask:
|
|
gamma = gamma * torch.zeros_like(gamma)
|
|
beta = beta * torch.zeros_like(beta)
|
|
h = self.param_free_norm(h) * (gamma + 1) + beta
|
|
if h_ori is not None and not self.pre_concat:
|
|
h = th.cat([h_ori, h], dim=1)
|
|
return h * control_scale + h_raw * (1 - control_scale)
|
|
|
|
|
|
class ZeroCrossAttn(nn.Module):
|
|
ATTENTION_MODES = {
|
|
"softmax": CrossAttention,
|
|
"softmax-xformers": MemoryEfficientCrossAttention
|
|
}
|
|
|
|
def __init__(self, context_dim, query_dim, zero_out=True, mask=False):
|
|
super().__init__()
|
|
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
|
assert attn_mode in self.ATTENTION_MODES
|
|
attn_cls = self.ATTENTION_MODES[attn_mode]
|
|
self.attn = attn_cls(query_dim=query_dim, context_dim=context_dim, heads=query_dim//64, dim_head=64)
|
|
self.norm1 = normalization(query_dim)
|
|
self.norm2 = normalization(context_dim)
|
|
|
|
self.mask = mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, context, x, control_scale=1):
|
|
assert self.mask is False
|
|
x_in = x
|
|
x = self.norm1(x)
|
|
context = self.norm2(context)
|
|
b, c, h, w = x.shape
|
|
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
|
context = rearrange(context, 'b c h w -> b (h w) c').contiguous()
|
|
x = self.attn(x, context)
|
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
|
if self.mask:
|
|
x = x * torch.zeros_like(x)
|
|
x = x_in + x * control_scale
|
|
|
|
return x
|
|
|
|
|
|
class GLVControl(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
model_channels,
|
|
out_channels,
|
|
num_res_blocks,
|
|
attention_resolutions,
|
|
dropout=0,
|
|
channel_mult=(1, 2, 4, 8),
|
|
conv_resample=True,
|
|
dims=2,
|
|
num_classes=None,
|
|
use_checkpoint=False,
|
|
use_fp16=False,
|
|
num_heads=-1,
|
|
num_head_channels=-1,
|
|
num_heads_upsample=-1,
|
|
use_scale_shift_norm=False,
|
|
resblock_updown=False,
|
|
use_new_attention_order=False,
|
|
use_spatial_transformer=False,
|
|
transformer_depth=1,
|
|
context_dim=None,
|
|
n_embed=None,
|
|
legacy=True,
|
|
disable_self_attentions=None,
|
|
num_attention_blocks=None,
|
|
disable_middle_self_attn=False,
|
|
use_linear_in_transformer=False,
|
|
spatial_transformer_attn_type="softmax",
|
|
adm_in_channels=None,
|
|
use_fairscale_checkpoint=False,
|
|
offload_to_cpu=False,
|
|
transformer_depth_middle=None,
|
|
input_upscale=1,
|
|
):
|
|
super().__init__()
|
|
from omegaconf.listconfig import ListConfig
|
|
|
|
if use_spatial_transformer:
|
|
assert (
|
|
context_dim is not None
|
|
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
|
|
|
if context_dim is not None:
|
|
assert (
|
|
use_spatial_transformer
|
|
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
|
if type(context_dim) == ListConfig:
|
|
context_dim = list(context_dim)
|
|
|
|
if num_heads_upsample == -1:
|
|
num_heads_upsample = num_heads
|
|
|
|
if num_heads == -1:
|
|
assert (
|
|
num_head_channels != -1
|
|
), "Either num_heads or num_head_channels has to be set"
|
|
|
|
if num_head_channels == -1:
|
|
assert (
|
|
num_heads != -1
|
|
), "Either num_heads or num_head_channels has to be set"
|
|
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
if isinstance(transformer_depth, int):
|
|
transformer_depth = len(channel_mult) * [transformer_depth]
|
|
elif isinstance(transformer_depth, ListConfig):
|
|
transformer_depth = list(transformer_depth)
|
|
transformer_depth_middle = default(
|
|
transformer_depth_middle, transformer_depth[-1]
|
|
)
|
|
|
|
if isinstance(num_res_blocks, int):
|
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
|
else:
|
|
if len(num_res_blocks) != len(channel_mult):
|
|
raise ValueError(
|
|
"provide num_res_blocks either as an int (globally constant) or "
|
|
"as a list/tuple (per-level) with the same length as channel_mult"
|
|
)
|
|
self.num_res_blocks = num_res_blocks
|
|
|
|
if disable_self_attentions is not None:
|
|
|
|
assert len(disable_self_attentions) == len(channel_mult)
|
|
if num_attention_blocks is not None:
|
|
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
|
assert all(
|
|
map(
|
|
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
|
range(len(num_attention_blocks)),
|
|
)
|
|
)
|
|
print(
|
|
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
|
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
|
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
|
f"attention will still not be set."
|
|
)
|
|
|
|
self.attention_resolutions = attention_resolutions
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.num_classes = num_classes
|
|
self.use_checkpoint = use_checkpoint
|
|
if use_fp16:
|
|
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
|
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
self.num_heads_upsample = num_heads_upsample
|
|
self.predict_codebook_ids = n_embed is not None
|
|
|
|
assert use_fairscale_checkpoint != use_checkpoint or not (
|
|
use_checkpoint or use_fairscale_checkpoint
|
|
)
|
|
|
|
self.use_fairscale_checkpoint = False
|
|
checkpoint_wrapper_fn = (
|
|
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
|
if self.use_fairscale_checkpoint
|
|
else lambda x: x
|
|
)
|
|
|
|
time_embed_dim = model_channels * 4
|
|
self.time_embed = checkpoint_wrapper_fn(
|
|
nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
)
|
|
|
|
if self.num_classes is not None:
|
|
if isinstance(self.num_classes, int):
|
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
|
elif self.num_classes == "continuous":
|
|
print("setting up linear c_adm embedding layer")
|
|
self.label_emb = nn.Linear(1, time_embed_dim)
|
|
elif self.num_classes == "timestep":
|
|
self.label_emb = checkpoint_wrapper_fn(
|
|
nn.Sequential(
|
|
Timestep(model_channels),
|
|
nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
),
|
|
)
|
|
)
|
|
elif self.num_classes == "sequential":
|
|
assert adm_in_channels is not None
|
|
self.label_emb = nn.Sequential(
|
|
nn.Sequential(
|
|
linear(adm_in_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError()
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(
|
|
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
|
)
|
|
]
|
|
)
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
for level, mult in enumerate(channel_mult):
|
|
for nr in range(self.num_res_blocks[level]):
|
|
layers = [
|
|
checkpoint_wrapper_fn(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=mult * model_channels,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
if ds in attention_resolutions:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if legacy:
|
|
|
|
dim_head = (
|
|
ch // num_heads
|
|
if use_spatial_transformer
|
|
else num_head_channels
|
|
)
|
|
if exists(disable_self_attentions):
|
|
disabled_sa = disable_self_attentions[level]
|
|
else:
|
|
disabled_sa = False
|
|
|
|
if (
|
|
not exists(num_attention_blocks)
|
|
or nr < num_attention_blocks[level]
|
|
):
|
|
layers.append(
|
|
checkpoint_wrapper_fn(
|
|
AttentionBlock(
|
|
ch,
|
|
use_checkpoint=use_checkpoint,
|
|
num_heads=num_heads,
|
|
num_head_channels=dim_head,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
if not use_spatial_transformer
|
|
else checkpoint_wrapper_fn(
|
|
SpatialTransformer(
|
|
ch,
|
|
num_heads,
|
|
dim_head,
|
|
depth=transformer_depth[level],
|
|
context_dim=context_dim,
|
|
disable_self_attn=disabled_sa,
|
|
use_linear=use_linear_in_transformer,
|
|
attn_type=spatial_transformer_attn_type,
|
|
use_checkpoint=use_checkpoint,
|
|
)
|
|
)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
checkpoint_wrapper_fn(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True,
|
|
)
|
|
)
|
|
if resblock_updown
|
|
else Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch
|
|
)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if legacy:
|
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
|
self.middle_block = TimestepEmbedSequential(
|
|
checkpoint_wrapper_fn(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
),
|
|
checkpoint_wrapper_fn(
|
|
AttentionBlock(
|
|
ch,
|
|
use_checkpoint=use_checkpoint,
|
|
num_heads=num_heads,
|
|
num_head_channels=dim_head,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
if not use_spatial_transformer
|
|
else checkpoint_wrapper_fn(
|
|
SpatialTransformer(
|
|
ch,
|
|
num_heads,
|
|
dim_head,
|
|
depth=transformer_depth_middle,
|
|
context_dim=context_dim,
|
|
disable_self_attn=disable_middle_self_attn,
|
|
use_linear=use_linear_in_transformer,
|
|
attn_type=spatial_transformer_attn_type,
|
|
use_checkpoint=use_checkpoint,
|
|
)
|
|
),
|
|
checkpoint_wrapper_fn(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
),
|
|
)
|
|
|
|
self.input_upscale = input_upscale
|
|
self.input_hint_block = TimestepEmbedSequential(
|
|
zero_module(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
|
)
|
|
|
|
def convert_to_fp16(self):
|
|
"""
|
|
Convert the torso of the model to float16.
|
|
"""
|
|
self.input_blocks.apply(convert_module_to_f16)
|
|
self.middle_block.apply(convert_module_to_f16)
|
|
|
|
def convert_to_fp32(self):
|
|
"""
|
|
Convert the torso of the model to float32.
|
|
"""
|
|
self.input_blocks.apply(convert_module_to_f32)
|
|
self.middle_block.apply(convert_module_to_f32)
|
|
|
|
def forward(self, x, timesteps, xt, context=None, y=None, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xt, context, y = xt.to(x.dtype), context.to(x.dtype), y.to(x.dtype)
|
|
|
|
if self.input_upscale != 1:
|
|
x = nn.functional.interpolate(x, scale_factor=self.input_upscale, mode='bilinear', antialias=True)
|
|
assert (y is not None) == (
|
|
self.num_classes is not None
|
|
), "must specify y if and only if the model is class-conditional"
|
|
hs = []
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
|
|
|
|
|
emb = self.time_embed(t_emb)
|
|
|
|
if self.num_classes is not None:
|
|
assert y.shape[0] == xt.shape[0]
|
|
emb = emb + self.label_emb(y)
|
|
|
|
guided_hint = self.input_hint_block(x, emb, context)
|
|
|
|
|
|
h = xt
|
|
for module in self.input_blocks:
|
|
if guided_hint is not None:
|
|
h = module(h, emb, context)
|
|
h += guided_hint
|
|
guided_hint = None
|
|
else:
|
|
h = module(h, emb, context)
|
|
hs.append(h)
|
|
|
|
|
|
h = self.middle_block(h, emb, context)
|
|
hs.append(h)
|
|
return hs
|
|
|
|
|
|
class LightGLVUNet(UNetModel):
|
|
def __init__(self, mode='', project_type='ZeroSFT', project_channel_scale=1,
|
|
*args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
if mode == 'XL-base':
|
|
cond_output_channels = [320] * 4 + [640] * 3 + [1280] * 3
|
|
project_channels = [160] * 4 + [320] * 3 + [640] * 3
|
|
concat_channels = [320] * 2 + [640] * 3 + [1280] * 4 + [0]
|
|
cross_attn_insert_idx = [6, 3]
|
|
self.progressive_mask_nums = [0, 3, 7, 11]
|
|
elif mode == 'XL-refine':
|
|
cond_output_channels = [384] * 4 + [768] * 3 + [1536] * 6
|
|
project_channels = [192] * 4 + [384] * 3 + [768] * 6
|
|
concat_channels = [384] * 2 + [768] * 3 + [1536] * 7 + [0]
|
|
cross_attn_insert_idx = [9, 6, 3]
|
|
self.progressive_mask_nums = [0, 3, 6, 10, 14]
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
project_channels = [int(c * project_channel_scale) for c in project_channels]
|
|
|
|
self.project_modules = nn.ModuleList()
|
|
for i in range(len(cond_output_channels)):
|
|
|
|
|
|
|
|
|
|
_project_type = project_type
|
|
if _project_type == 'ZeroSFT':
|
|
self.project_modules.append(ZeroSFT(project_channels[i], cond_output_channels[i],
|
|
concat_channels=concat_channels[i]))
|
|
elif _project_type == 'ZeroCrossAttn':
|
|
self.project_modules.append(ZeroCrossAttn(cond_output_channels[i], project_channels[i]))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
for i in cross_attn_insert_idx:
|
|
self.project_modules.insert(i, ZeroCrossAttn(cond_output_channels[i], concat_channels[i]))
|
|
|
|
|
|
def step_progressive_mask(self):
|
|
if len(self.progressive_mask_nums) > 0:
|
|
mask_num = self.progressive_mask_nums.pop()
|
|
for i in range(len(self.project_modules)):
|
|
if i < mask_num:
|
|
self.project_modules[i].mask = True
|
|
else:
|
|
self.project_modules[i].mask = False
|
|
return
|
|
|
|
else:
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, control=None, control_scale=1, **kwargs):
|
|
"""
|
|
Apply the model to an input batch.
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
:param context: conditioning plugged in via crossattn
|
|
:param y: an [N] Tensor of labels, if class-conditional.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
assert (y is not None) == (
|
|
self.num_classes is not None
|
|
), "must specify y if and only if the model is class-conditional"
|
|
hs = []
|
|
|
|
_dtype = control[0].dtype
|
|
x, context, y = x.to(_dtype), context.to(_dtype), y.to(_dtype)
|
|
|
|
with torch.no_grad():
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
|
emb = self.time_embed(t_emb)
|
|
|
|
if self.num_classes is not None:
|
|
assert y.shape[0] == x.shape[0]
|
|
emb = emb + self.label_emb(y)
|
|
|
|
|
|
h = x
|
|
for module in self.input_blocks:
|
|
h = module(h, emb, context)
|
|
hs.append(h)
|
|
|
|
adapter_idx = len(self.project_modules) - 1
|
|
control_idx = len(control) - 1
|
|
h = self.middle_block(h, emb, context)
|
|
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
|
|
adapter_idx -= 1
|
|
control_idx -= 1
|
|
|
|
for i, module in enumerate(self.output_blocks):
|
|
_h = hs.pop()
|
|
h = self.project_modules[adapter_idx](control[control_idx], _h, h, control_scale=control_scale)
|
|
adapter_idx -= 1
|
|
|
|
if len(module) == 3:
|
|
assert isinstance(module[2], Upsample)
|
|
for layer in module[:2]:
|
|
if isinstance(layer, TimestepBlock):
|
|
h = layer(h, emb)
|
|
elif isinstance(layer, SpatialTransformer):
|
|
h = layer(h, context)
|
|
else:
|
|
h = layer(h)
|
|
|
|
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
|
|
adapter_idx -= 1
|
|
h = module[2](h)
|
|
else:
|
|
h = module(h, emb, context)
|
|
control_idx -= 1
|
|
|
|
|
|
|
|
h = h.type(x.dtype)
|
|
if self.predict_codebook_ids:
|
|
assert False, "not supported anymore. what the f*** are you doing?"
|
|
else:
|
|
return self.out(h)
|
|
|
|
if __name__ == '__main__':
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
opt = OmegaConf.load('../../options/dev/SUPIR_tmp.yaml')
|
|
|
|
model = instantiate_from_config(opt.model.params.control_stage_config)
|
|
model = model.cuda()
|
|
|
|
hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 2048]).cuda(),
|
|
torch.randn([1, 2816]).cuda())
|
|
|
|
for h in hint:
|
|
print(h.shape)
|
|
|
|
unet = instantiate_from_config(opt.model.params.network_config)
|
|
unet = unet.cuda()
|
|
_output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 2048]).cuda(),
|
|
torch.randn([1, 2816]).cuda(), hint)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|