Fabrice-TIERCELIN's picture
Upload 2 files
5a8a838 verified
import os
import torch
import numpy as np
import cv2
from PIL import Image
from torch.nn.functional import interpolate
from omegaconf import OmegaConf
from sgm.util import instantiate_from_config
def get_state_dict(d):
return d.get('state_dict', d)
def load_state_dict(ckpt_path, location='cpu'):
_, extension = os.path.splitext(ckpt_path)
if extension.lower() == ".safetensors":
import safetensors.torch
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
else:
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
state_dict = get_state_dict(state_dict)
print(f'Loaded state_dict from [{ckpt_path}]')
return state_dict
def create_model(config_path):
config = OmegaConf.load(config_path)
model = instantiate_from_config(config.model).cpu()
print(f'Loaded model config from [{config_path}]')
return model
def create_SUPIR_model(config_path, SUPIR_sign=None, load_default_setting=False):
config = OmegaConf.load(config_path)
model = instantiate_from_config(config.model).cpu()
print(f'Loaded model config from [{config_path}]')
if config.SDXL_CKPT is not None:
model.load_state_dict(load_state_dict(config.SDXL_CKPT), strict=False)
if config.SUPIR_CKPT is not None:
model.load_state_dict(load_state_dict(config.SUPIR_CKPT), strict=False)
if SUPIR_sign is not None:
assert SUPIR_sign in ['F', 'Q']
if SUPIR_sign == 'F':
model.load_state_dict(load_state_dict(config.SUPIR_CKPT_F), strict=False)
elif SUPIR_sign == 'Q':
model.load_state_dict(load_state_dict(config.SUPIR_CKPT_Q), strict=False)
if load_default_setting:
default_setting = config.default_setting
return model, default_setting
return model
def load_QF_ckpt(config_path):
config = OmegaConf.load(config_path)
ckpt_F = torch.load(config.SUPIR_CKPT_F, map_location='cpu')
ckpt_Q = torch.load(config.SUPIR_CKPT_Q, map_location='cpu')
return ckpt_Q, ckpt_F
def PIL2Tensor(img, upsacle=1, min_size=1024, fix_resize=None):
'''
PIL.Image -> Tensor[C, H, W], RGB, [-1, 1]
'''
# size
w, h = img.size
w *= upsacle
h *= upsacle
w0, h0 = round(w), round(h)
if min(w, h) < min_size:
_upsacle = min_size / min(w, h)
w *= _upsacle
h *= _upsacle
if fix_resize is not None:
_upsacle = fix_resize / min(w, h)
w *= _upsacle
h *= _upsacle
w0, h0 = round(w), round(h)
w = int(np.round(w / 64.0)) * 64
h = int(np.round(h / 64.0)) * 64
x = img.resize((w, h), Image.BICUBIC)
x = np.array(x).round().clip(0, 255).astype(np.uint8)
x = x / 255 * 2 - 1
x = torch.tensor(x, dtype=torch.float32).permute(2, 0, 1)
return x, h0, w0
def Tensor2PIL(x, h0, w0):
'''
Tensor[C, H, W], RGB, [-1, 1] -> PIL.Image
'''
x = x.unsqueeze(0)
x = interpolate(x, size=(h0, w0), mode='bicubic')
x = (x.squeeze(0).permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
return Image.fromarray(x)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def upscale_image(input_image, upscale, min_size=None, unit_resolution=64):
H, W, C = input_image.shape
H = float(H)
W = float(W)
H *= upscale
W *= upscale
if min_size is not None:
if min(H, W) < min_size:
_upsacle = min_size / min(W, H)
W *= _upsacle
H *= _upsacle
H = int(np.round(H / unit_resolution)) * unit_resolution
W = int(np.round(W / unit_resolution)) * unit_resolution
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if upscale > 1 else cv2.INTER_AREA)
img = img.round().clip(0, 255).astype(np.uint8)
return img
def fix_resize(input_image, size=512, unit_resolution=64):
H, W, C = input_image.shape
H = float(H)
W = float(W)
upscale = size / min(H, W)
H *= upscale
W *= upscale
H = int(np.round(H / unit_resolution)) * unit_resolution
W = int(np.round(W / unit_resolution)) * unit_resolution
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if upscale > 1 else cv2.INTER_AREA)
img = img.round().clip(0, 255).astype(np.uint8)
return img
def Numpy2Tensor(img):
'''
np.array[H, w, C] [0, 255] -> Tensor[C, H, W], RGB, [-1, 1]
'''
# size
img = np.array(img) / 255 * 2 - 1
img = torch.tensor(img, dtype=torch.float32).permute(2, 0, 1)
return img
def Tensor2Numpy(x, h0=None, w0=None):
'''
Tensor[C, H, W], RGB, [-1, 1] -> PIL.Image
'''
if h0 is not None and w0 is not None:
x = x.unsqueeze(0)
x = interpolate(x, size=(h0, w0), mode='bicubic')
x = x.squeeze(0)
x = (x.permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
return x
def convert_dtype(dtype_str):
if dtype_str == 'fp32':
return torch.float32
elif dtype_str == 'fp16':
return torch.float16
elif dtype_str == 'bf16':
return torch.bfloat16
else:
raise NotImplementedError