|
"""Attention layers."""
|
|
import math
|
|
import warnings
|
|
from typing import Optional
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange
|
|
from packaging import version
|
|
from torch import nn
|
|
from .norm import LPLayerNorm
|
|
|
|
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
|
if original_is_causal and num_query_tokens != num_key_tokens:
|
|
if num_query_tokens != 1:
|
|
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
|
else:
|
|
return False
|
|
return original_is_causal
|
|
|
|
def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
|
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
|
kv_n_heads = 1 if multiquery else n_heads
|
|
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
|
|
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
|
|
if past_key_value is not None:
|
|
if len(past_key_value) != 0:
|
|
k = torch.cat([past_key_value[0], k], dim=3)
|
|
v = torch.cat([past_key_value[1], v], dim=2)
|
|
past_key_value = (k, v)
|
|
(b, _, s_q, d) = q.shape
|
|
s_k = k.size(-1)
|
|
if softmax_scale is None:
|
|
softmax_scale = 1 / math.sqrt(d)
|
|
attn_weight = q.matmul(k) * softmax_scale
|
|
if attn_bias is not None:
|
|
_s_q = max(0, attn_bias.size(2) - s_q)
|
|
_s_k = max(0, attn_bias.size(3) - s_k)
|
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
|
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
|
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
|
attn_weight = attn_weight + attn_bias
|
|
min_val = torch.finfo(q.dtype).min
|
|
if key_padding_mask is not None:
|
|
if attn_bias is not None:
|
|
warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
|
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
|
if is_causal and (not q.size(2) == 1):
|
|
s = max(s_q, s_k)
|
|
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
|
causal_mask = causal_mask.tril()
|
|
causal_mask = causal_mask.to(torch.bool)
|
|
causal_mask = ~causal_mask
|
|
causal_mask = causal_mask[-s_q:, -s_k:]
|
|
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
if dropout_p:
|
|
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
|
out = attn_weight.to(v.dtype).matmul(v)
|
|
out = rearrange(out, 'b h s d -> b s (h d)')
|
|
if needs_weights:
|
|
return (out, attn_weight, past_key_value)
|
|
return (out, None, past_key_value)
|
|
|
|
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
|
for tensor in tensors:
|
|
if tensor.dtype not in valid_dtypes:
|
|
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
|
if not tensor.is_cuda:
|
|
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
|
|
|
def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
|
try:
|
|
from flash_attn import bert_padding, flash_attn_interface
|
|
except:
|
|
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
|
check_valid_inputs(query, key, value)
|
|
if past_key_value is not None:
|
|
if len(past_key_value) != 0:
|
|
key = torch.cat([past_key_value[0], key], dim=1)
|
|
value = torch.cat([past_key_value[1], value], dim=1)
|
|
past_key_value = (key, value)
|
|
if attn_bias is not None:
|
|
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
|
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
|
if attn_bias is not None:
|
|
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
|
(batch_size, seqlen) = query.shape[:2]
|
|
if key_padding_mask is None:
|
|
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
|
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
|
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
|
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
|
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
|
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
|
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
|
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
|
if multiquery:
|
|
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
|
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
|
dropout_p = dropout_p if training else 0.0
|
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
|
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
|
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
|
return (output, None, past_key_value)
|
|
|
|
def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
|
try:
|
|
from .flash_attn_triton import flash_attn_func
|
|
except:
|
|
_installed = False
|
|
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
|
_installed = True
|
|
try:
|
|
from flash_attn.flash_attn_triton import flash_attn_func
|
|
except:
|
|
_installed = False
|
|
if not _installed:
|
|
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
|
|
check_valid_inputs(query, key, value)
|
|
if past_key_value is not None:
|
|
if len(past_key_value) != 0:
|
|
key = torch.cat([past_key_value[0], key], dim=1)
|
|
value = torch.cat([past_key_value[1], value], dim=1)
|
|
past_key_value = (key, value)
|
|
if attn_bias is not None:
|
|
_s_q = max(0, attn_bias.size(2) - query.size(1))
|
|
_s_k = max(0, attn_bias.size(3) - key.size(1))
|
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
|
|
if dropout_p:
|
|
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
|
if needs_weights:
|
|
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
|
if key_padding_mask is not None:
|
|
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
|
(b_size, s_k) = key_padding_mask.shape[:2]
|
|
if attn_bias is None:
|
|
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
|
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
|
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
|
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
|
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
|
if multiquery:
|
|
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
|
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
|
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
|
output = attn_output.view(*attn_output.shape[:2], -1)
|
|
return (output, None, past_key_value)
|
|
|
|
class MultiheadAttention(nn.Module):
|
|
"""Multi-head self attention.
|
|
|
|
Using torch or triton attention implementation enables user to also use
|
|
additive bias.
|
|
"""
|
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
|
|
super().__init__()
|
|
self.attn_impl = attn_impl
|
|
self.clip_qkv = clip_qkv
|
|
self.qk_ln = qk_ln
|
|
self.d_model = d_model
|
|
self.n_heads = n_heads
|
|
self.softmax_scale = softmax_scale
|
|
if self.softmax_scale is None:
|
|
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
|
self.attn_dropout_p = attn_pdrop
|
|
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
|
fuse_splits = (d_model, 2 * d_model)
|
|
self.Wqkv._fused = (0, fuse_splits)
|
|
if self.qk_ln:
|
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
|
self.q_ln = layernorm_class(self.d_model, device=device)
|
|
self.k_ln = layernorm_class(self.d_model, device=device)
|
|
if self.attn_impl == 'flash':
|
|
self.attn_fn = flash_attn_fn
|
|
elif self.attn_impl == 'triton':
|
|
self.attn_fn = triton_flash_attn_fn
|
|
if verbose:
|
|
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
|
elif self.attn_impl == 'torch':
|
|
self.attn_fn = scaled_multihead_dot_product_attention
|
|
if torch.cuda.is_available() and verbose:
|
|
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
|
else:
|
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
|
self.out_proj._is_residual = True
|
|
|
|
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
|
qkv = self.Wqkv(x)
|
|
if self.clip_qkv:
|
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
|
(query, key, value) = qkv.chunk(3, dim=2)
|
|
key_padding_mask = attention_mask
|
|
if self.qk_ln:
|
|
dtype = query.dtype
|
|
query = self.q_ln(query).to(dtype)
|
|
key = self.k_ln(key).to(dtype)
|
|
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
|
return (self.out_proj(context), attn_weights, past_key_value)
|
|
|
|
class MultiQueryAttention(nn.Module):
|
|
"""Multi-Query self attention.
|
|
|
|
Using torch or triton attention implementation enables user to also use
|
|
additive bias.
|
|
"""
|
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None):
|
|
super().__init__()
|
|
self.attn_impl = attn_impl
|
|
self.clip_qkv = clip_qkv
|
|
self.qk_ln = qk_ln
|
|
self.d_model = d_model
|
|
self.n_heads = n_heads
|
|
self.head_dim = d_model // n_heads
|
|
self.softmax_scale = softmax_scale
|
|
if self.softmax_scale is None:
|
|
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
|
self.attn_dropout_p = attn_pdrop
|
|
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
|
fuse_splits = (d_model, d_model + self.head_dim)
|
|
self.Wqkv._fused = (0, fuse_splits)
|
|
if self.qk_ln:
|
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
|
self.q_ln = layernorm_class(d_model, device=device)
|
|
self.k_ln = layernorm_class(self.head_dim, device=device)
|
|
if self.attn_impl == 'flash':
|
|
self.attn_fn = flash_attn_fn
|
|
elif self.attn_impl == 'triton':
|
|
self.attn_fn = triton_flash_attn_fn
|
|
if verbose:
|
|
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
|
elif self.attn_impl == 'torch':
|
|
self.attn_fn = scaled_multihead_dot_product_attention
|
|
if torch.cuda.is_available() and verbose:
|
|
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
|
else:
|
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
|
self.out_proj._is_residual = True
|
|
|
|
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
|
qkv = self.Wqkv(x)
|
|
if self.clip_qkv:
|
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
|
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
|
key_padding_mask = attention_mask
|
|
if self.qk_ln:
|
|
dtype = query.dtype
|
|
query = self.q_ln(query).to(dtype)
|
|
key = self.k_ln(key).to(dtype)
|
|
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
|
return (self.out_proj(context), attn_weights, past_key_value)
|
|
|
|
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
|
if attn_impl == 'flash':
|
|
return None
|
|
elif attn_impl in ['torch', 'triton']:
|
|
if alibi:
|
|
if (prefix_lm or not causal) or use_sequence_id:
|
|
return (1, n_heads, seq_len, seq_len)
|
|
return (1, n_heads, 1, seq_len)
|
|
elif prefix_lm or use_sequence_id:
|
|
return (1, 1, seq_len, seq_len)
|
|
return None
|
|
else:
|
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
|
|
|
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
|
if attn_impl == 'flash':
|
|
return None
|
|
elif attn_impl in ['torch', 'triton']:
|
|
if alibi:
|
|
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
|
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
|
return attn_bias
|
|
else:
|
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
|
|
|
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
|
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
|
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
|
m = m.mul(alibi_bias_max / _n_heads)
|
|
slopes = 1.0 / torch.pow(2, m)
|
|
if _n_heads != n_heads:
|
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
|
return slopes.view(1, n_heads, 1, 1)
|
|
|
|
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
|
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
|
if full:
|
|
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
|
alibi_bias = alibi_bias.abs().mul(-1)
|
|
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
|
alibi_bias = alibi_bias * slopes
|
|
return alibi_bias.to(dtype=dtype)
|
|
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
|
|