|
"""
|
|
adopted from
|
|
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
|
and
|
|
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
|
and
|
|
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
|
|
|
thanks!
|
|
"""
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import repeat
|
|
|
|
|
|
def make_beta_schedule(
|
|
schedule,
|
|
n_timestep,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
):
|
|
if schedule == "linear":
|
|
betas = (
|
|
torch.linspace(
|
|
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
|
)
|
|
** 2
|
|
)
|
|
return betas.numpy()
|
|
|
|
|
|
def extract_into_tensor(a, t, x_shape):
|
|
b, *_ = t.shape
|
|
out = a.gather(-1, t)
|
|
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
|
|
|
|
|
def mixed_checkpoint(func, inputs: dict, params, flag):
|
|
"""
|
|
Evaluate a function without caching intermediate activations, allowing for
|
|
reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function
|
|
borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that
|
|
it also works with non-tensor inputs
|
|
:param func: the function to evaluate.
|
|
:param inputs: the argument dictionary to pass to `func`.
|
|
:param params: a sequence of parameters `func` depends on but does not
|
|
explicitly take as arguments.
|
|
:param flag: if False, disable gradient checkpointing.
|
|
"""
|
|
if flag:
|
|
tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)]
|
|
tensor_inputs = [
|
|
inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor)
|
|
]
|
|
non_tensor_keys = [
|
|
key for key in inputs if not isinstance(inputs[key], torch.Tensor)
|
|
]
|
|
non_tensor_inputs = [
|
|
inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor)
|
|
]
|
|
args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params)
|
|
return MixedCheckpointFunction.apply(
|
|
func,
|
|
len(tensor_inputs),
|
|
len(non_tensor_inputs),
|
|
tensor_keys,
|
|
non_tensor_keys,
|
|
*args,
|
|
)
|
|
else:
|
|
return func(**inputs)
|
|
|
|
|
|
class MixedCheckpointFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
run_function,
|
|
length_tensors,
|
|
length_non_tensors,
|
|
tensor_keys,
|
|
non_tensor_keys,
|
|
*args,
|
|
):
|
|
ctx.end_tensors = length_tensors
|
|
ctx.end_non_tensors = length_tensors + length_non_tensors
|
|
ctx.gpu_autocast_kwargs = {
|
|
"enabled": torch.is_autocast_enabled(),
|
|
"dtype": torch.get_autocast_gpu_dtype(),
|
|
"cache_enabled": torch.is_autocast_cache_enabled(),
|
|
}
|
|
assert (
|
|
len(tensor_keys) == length_tensors
|
|
and len(non_tensor_keys) == length_non_tensors
|
|
)
|
|
|
|
ctx.input_tensors = {
|
|
key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors]))
|
|
}
|
|
ctx.input_non_tensors = {
|
|
key: val
|
|
for (key, val) in zip(
|
|
non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors])
|
|
)
|
|
}
|
|
ctx.run_function = run_function
|
|
ctx.input_params = list(args[ctx.end_non_tensors :])
|
|
|
|
with torch.no_grad():
|
|
output_tensors = ctx.run_function(
|
|
**ctx.input_tensors, **ctx.input_non_tensors
|
|
)
|
|
return output_tensors
|
|
|
|
@staticmethod
|
|
def backward(ctx, *output_grads):
|
|
|
|
ctx.input_tensors = {
|
|
key: ctx.input_tensors[key].detach().requires_grad_(True)
|
|
for key in ctx.input_tensors
|
|
}
|
|
|
|
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
|
|
|
|
|
|
|
shallow_copies = {
|
|
key: ctx.input_tensors[key].view_as(ctx.input_tensors[key])
|
|
for key in ctx.input_tensors
|
|
}
|
|
|
|
output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors)
|
|
input_grads = torch.autograd.grad(
|
|
output_tensors,
|
|
list(ctx.input_tensors.values()) + ctx.input_params,
|
|
output_grads,
|
|
allow_unused=True,
|
|
)
|
|
del ctx.input_tensors
|
|
del ctx.input_params
|
|
del output_tensors
|
|
return (
|
|
(None, None, None, None, None)
|
|
+ input_grads[: ctx.end_tensors]
|
|
+ (None,) * (ctx.end_non_tensors - ctx.end_tensors)
|
|
+ input_grads[ctx.end_tensors :]
|
|
)
|
|
|
|
|
|
def checkpoint(func, inputs, params, flag):
|
|
"""
|
|
Evaluate a function without caching intermediate activations, allowing for
|
|
reduced memory at the expense of extra compute in the backward pass.
|
|
:param func: the function to evaluate.
|
|
:param inputs: the argument sequence to pass to `func`.
|
|
:param params: a sequence of parameters `func` depends on but does not
|
|
explicitly take as arguments.
|
|
:param flag: if False, disable gradient checkpointing.
|
|
"""
|
|
if flag:
|
|
args = tuple(inputs) + tuple(params)
|
|
return CheckpointFunction.apply(func, len(inputs), *args)
|
|
else:
|
|
return func(*inputs)
|
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, run_function, length, *args):
|
|
ctx.run_function = run_function
|
|
ctx.input_tensors = list(args[:length])
|
|
ctx.input_params = list(args[length:])
|
|
ctx.gpu_autocast_kwargs = {
|
|
"enabled": torch.is_autocast_enabled(),
|
|
"dtype": torch.get_autocast_gpu_dtype(),
|
|
"cache_enabled": torch.is_autocast_cache_enabled(),
|
|
}
|
|
with torch.no_grad():
|
|
output_tensors = ctx.run_function(*ctx.input_tensors)
|
|
return output_tensors
|
|
|
|
@staticmethod
|
|
def backward(ctx, *output_grads):
|
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
|
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
|
|
|
|
|
|
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
|
output_tensors = ctx.run_function(*shallow_copies)
|
|
input_grads = torch.autograd.grad(
|
|
output_tensors,
|
|
ctx.input_tensors + ctx.input_params,
|
|
output_grads,
|
|
allow_unused=True,
|
|
)
|
|
del ctx.input_tensors
|
|
del ctx.input_params
|
|
del output_tensors
|
|
return (None, None) + input_grads
|
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
|
These may be fractional.
|
|
:param dim: the dimension of the output.
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
:return: an [N x dim] Tensor of positional embeddings.
|
|
"""
|
|
if not repeat_only:
|
|
half = dim // 2
|
|
freqs = torch.exp(
|
|
-math.log(max_period)
|
|
* torch.arange(start=0, end=half, dtype=torch.float32)
|
|
/ half
|
|
).to(device=timesteps.device)
|
|
args = timesteps[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat(
|
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
|
)
|
|
else:
|
|
embedding = repeat(timesteps, "b -> b d", d=dim)
|
|
return embedding
|
|
|
|
|
|
def zero_module(module):
|
|
"""
|
|
Zero out the parameters of a module and return it.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
|
|
def scale_module(module, scale):
|
|
"""
|
|
Scale the parameters of a module and return it.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().mul_(scale)
|
|
return module
|
|
|
|
|
|
def mean_flat(tensor):
|
|
"""
|
|
Take the mean over all non-batch dimensions.
|
|
"""
|
|
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
|
|
|
|
|
def normalization(channels):
|
|
"""
|
|
Make a standard normalization layer.
|
|
:param channels: number of input channels.
|
|
:return: an nn.Module for normalization.
|
|
"""
|
|
return GroupNorm32(32, channels)
|
|
|
|
|
|
|
|
class SiLU(nn.Module):
|
|
def forward(self, x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
class GroupNorm32(nn.GroupNorm):
|
|
def forward(self, x):
|
|
|
|
return super().forward(x)
|
|
|
|
|
|
def conv_nd(dims, *args, **kwargs):
|
|
"""
|
|
Create a 1D, 2D, or 3D convolution module.
|
|
"""
|
|
if dims == 1:
|
|
return nn.Conv1d(*args, **kwargs)
|
|
elif dims == 2:
|
|
return nn.Conv2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return nn.Conv3d(*args, **kwargs)
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|
|
|
|
def linear(*args, **kwargs):
|
|
"""
|
|
Create a linear module.
|
|
"""
|
|
return nn.Linear(*args, **kwargs)
|
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs):
|
|
"""
|
|
Create a 1D, 2D, or 3D average pooling module.
|
|
"""
|
|
if dims == 1:
|
|
return nn.AvgPool1d(*args, **kwargs)
|
|
elif dims == 2:
|
|
return nn.AvgPool2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return nn.AvgPool3d(*args, **kwargs)
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|