Fabrice-TIERCELIN
commited on
ZERO space only for AI
Browse files- gradio_demo.py +52 -11
gradio_demo.py
CHANGED
@@ -79,7 +79,7 @@ def check(input_image):
|
|
79 |
def reset_feedback():
|
80 |
return 3, ''
|
81 |
|
82 |
-
@spaces.GPU(duration=
|
83 |
def stage1_process(input_image, gamma_correction):
|
84 |
print('stage1_process ==>>')
|
85 |
if torch.cuda.device_count() == 0:
|
@@ -101,7 +101,7 @@ def stage1_process(input_image, gamma_correction):
|
|
101 |
print('<<== stage1_process')
|
102 |
return LQ, gr.update(visible = True)
|
103 |
|
104 |
-
@spaces.GPU(duration=
|
105 |
def llave_process(input_image, temperature, top_p, qs=None):
|
106 |
print('llave_process ==>>')
|
107 |
if torch.cuda.device_count() == 0:
|
@@ -117,7 +117,6 @@ def llave_process(input_image, temperature, top_p, qs=None):
|
|
117 |
print('<<== llave_process')
|
118 |
return captions[0]
|
119 |
|
120 |
-
@spaces.GPU(duration=540)
|
121 |
def stage2_process(
|
122 |
noisy_image,
|
123 |
denoise_image,
|
@@ -196,11 +195,26 @@ def stage2_process(
|
|
196 |
model.ae_dtype = convert_dtype(ae_dtype)
|
197 |
model.model.dtype = convert_dtype(diff_dtype)
|
198 |
|
199 |
-
samples =
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
206 |
0, 255).astype(np.uint8)
|
@@ -238,6 +252,33 @@ def stage2_process(
|
|
238 |
# Only one image can be shown in the slider
|
239 |
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
def load_and_reset(param_setting):
|
242 |
print('load_and_reset ==>>')
|
243 |
if torch.cuda.device_count() == 0:
|
@@ -289,15 +330,15 @@ def submit_feedback(event_id, fb_score, fb_text):
|
|
289 |
|
290 |
title_html = """
|
291 |
<h1><center>SUPIR</center></h1>
|
292 |
-
<big
|
293 |
-
<center
|
294 |
|
295 |
<p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
|
296 |
It is still a research project under tested and is not yet a stable commercial product.
|
297 |
LlaVa is not integrated in this demo. The content added by SUPIR is imagination, not real-world information.
|
298 |
The aim of SUPIR is the beauty and the illustration.
|
299 |
Most of the processes only last few minutes.
|
300 |
-
This demo can handle huge images but the process will be aborted if it lasts more than
|
301 |
|
302 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
303 |
"""
|
|
|
79 |
def reset_feedback():
|
80 |
return 3, ''
|
81 |
|
82 |
+
@spaces.GPU(duration=600)
|
83 |
def stage1_process(input_image, gamma_correction):
|
84 |
print('stage1_process ==>>')
|
85 |
if torch.cuda.device_count() == 0:
|
|
|
101 |
print('<<== stage1_process')
|
102 |
return LQ, gr.update(visible = True)
|
103 |
|
104 |
+
@spaces.GPU(duration=600)
|
105 |
def llave_process(input_image, temperature, top_p, qs=None):
|
106 |
print('llave_process ==>>')
|
107 |
if torch.cuda.device_count() == 0:
|
|
|
117 |
print('<<== llave_process')
|
118 |
return captions[0]
|
119 |
|
|
|
120 |
def stage2_process(
|
121 |
noisy_image,
|
122 |
denoise_image,
|
|
|
195 |
model.ae_dtype = convert_dtype(ae_dtype)
|
196 |
model.model.dtype = convert_dtype(diff_dtype)
|
197 |
|
198 |
+
samples = restore(
|
199 |
+
model,
|
200 |
+
LQ,
|
201 |
+
captions,
|
202 |
+
edm_steps,
|
203 |
+
s_stage1,
|
204 |
+
s_churn,
|
205 |
+
s_noise,
|
206 |
+
s_cfg,
|
207 |
+
s_stage2,
|
208 |
+
seed,
|
209 |
+
num_samples,
|
210 |
+
a_prompt,
|
211 |
+
n_prompt,
|
212 |
+
color_fix_type,
|
213 |
+
linear_CFG,
|
214 |
+
linear_s_stage2,
|
215 |
+
spt_linear_CFG,
|
216 |
+
spt_linear_s_stage2
|
217 |
+
)
|
218 |
|
219 |
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
220 |
0, 255).astype(np.uint8)
|
|
|
252 |
# Only one image can be shown in the slider
|
253 |
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
|
254 |
|
255 |
+
@spaces.GPU(duration=600)
|
256 |
+
def restore(
|
257 |
+
model,
|
258 |
+
LQ,
|
259 |
+
captions,
|
260 |
+
edm_steps,
|
261 |
+
s_stage1,
|
262 |
+
s_churn,
|
263 |
+
s_noise,
|
264 |
+
s_cfg,
|
265 |
+
s_stage2,
|
266 |
+
seed,
|
267 |
+
num_samples,
|
268 |
+
a_prompt,
|
269 |
+
n_prompt,
|
270 |
+
color_fix_type,
|
271 |
+
linear_CFG,
|
272 |
+
linear_s_stage2,
|
273 |
+
spt_linear_CFG,
|
274 |
+
spt_linear_s_stage2
|
275 |
+
):
|
276 |
+
return model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
|
277 |
+
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
278 |
+
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
279 |
+
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
280 |
+
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
|
281 |
+
|
282 |
def load_and_reset(param_setting):
|
283 |
print('load_and_reset ==>>')
|
284 |
if torch.cuda.device_count() == 0:
|
|
|
330 |
|
331 |
title_html = """
|
332 |
<h1><center>SUPIR</center></h1>
|
333 |
+
<center><big>Upscale your images up to x8 freely, without account, without watermark and download it</big></center>
|
334 |
+
<center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
|
335 |
|
336 |
<p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
|
337 |
It is still a research project under tested and is not yet a stable commercial product.
|
338 |
LlaVa is not integrated in this demo. The content added by SUPIR is imagination, not real-world information.
|
339 |
The aim of SUPIR is the beauty and the illustration.
|
340 |
Most of the processes only last few minutes.
|
341 |
+
This demo can handle huge images but the process will be aborted if it lasts more than 10 min.
|
342 |
|
343 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
344 |
"""
|