Fabrice-TIERCELIN commited on
Commit
57363eb
·
verified ·
1 Parent(s): 4fe413f

All the results have the same size

Browse files
Files changed (1) hide show
  1. gradio_demo.py +15 -13
gradio_demo.py CHANGED
@@ -203,6 +203,9 @@ def stage2_process(
203
  for i, result in enumerate(results):
204
  Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
205
 
 
 
 
206
  print('End stage2_process')
207
  end = time.time()
208
  secondes = int(end - start)
@@ -212,7 +215,7 @@ def stage2_process(
212
  minutes = minutes - (hours * 60)
213
  information = ("Restart the process to get another result. " if randomize_seed else "") + "The image(s) has(ve) been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
214
 
215
- return [input_image] + results, [input_image] + results, gr.update(value = information, visible = True), event_id
216
 
217
  def load_and_reset(param_setting):
218
  print('Start load_and_reset')
@@ -296,18 +299,17 @@ with gr.Blocks(title="SUPIR") as interface:
296
  """)
297
  gr.HTML(title_html)
298
 
299
- with gr.Group():
300
- input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
301
- prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
302
- upscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
303
- a_prompt = gr.Textbox(label="Image description",
304
- info="Help the AI to understand what the image represents",
305
- value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
306
- 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
307
- 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
308
- 'hyper sharpness, perfect without deformations.',
309
- lines=3)
310
- a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
311
 
312
  with gr.Accordion("Pre-denoising (optional)", open=False):
313
  gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
 
203
  for i, result in enumerate(results):
204
  Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
205
 
206
+ # All the results have the same size
207
+ result_height, result_width, result_channel = np.array(results[0]).shape
208
+
209
  print('End stage2_process')
210
  end = time.time()
211
  secondes = int(end - start)
 
215
  minutes = minutes - (hours * 60)
216
  information = ("Restart the process to get another result. " if randomize_seed else "") + "The image(s) has(ve) been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
217
 
218
+ return [noisy_image] + results, [noisy_image] + results, gr.update(value = information, visible = True), event_id
219
 
220
  def load_and_reset(param_setting):
221
  print('Start load_and_reset')
 
299
  """)
300
  gr.HTML(title_html)
301
 
302
+ input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
303
+ prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
304
+ upscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
305
+ a_prompt = gr.Textbox(label="Image description (optional)",
306
+ info="Help the AI to understand what the image represents; describe as much as possible",
307
+ value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
308
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
309
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
310
+ 'hyper sharpness, perfect without deformations.',
311
+ lines=3)
312
+ a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
 
313
 
314
  with gr.Accordion("Pre-denoising (optional)", open=False):
315
  gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)