Fabrice-TIERCELIN commited on
Commit
610ac0b
1 Parent(s): d459b6a

Start batchify_denoise

Browse files
Files changed (1) hide show
  1. SUPIR/models/SUPIR_model.py +197 -195
SUPIR/models/SUPIR_model.py CHANGED
@@ -1,195 +1,197 @@
1
- import torch
2
- from sgm.models.diffusion import DiffusionEngine
3
- from sgm.util import instantiate_from_config
4
- import copy
5
- from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
6
- import random
7
- from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
8
- from pytorch_lightning import seed_everything
9
- from torch.nn.functional import interpolate
10
- from SUPIR.utils.tilevae import VAEHook
11
-
12
- class SUPIRModel(DiffusionEngine):
13
- def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
14
- super().__init__(*args, **kwargs)
15
- control_model = instantiate_from_config(control_stage_config)
16
- self.model.load_control_model(control_model)
17
- self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
18
- self.sampler_config = kwargs['sampler_config']
19
-
20
- assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
21
- if ae_dtype == 'fp32':
22
- ae_dtype = torch.float32
23
- elif ae_dtype == 'fp16':
24
- raise RuntimeError('fp16 cause NaN in AE')
25
- elif ae_dtype == 'bf16':
26
- ae_dtype = torch.bfloat16
27
-
28
- if diffusion_dtype == 'fp32':
29
- diffusion_dtype = torch.float32
30
- elif diffusion_dtype == 'fp16':
31
- diffusion_dtype = torch.float16
32
- elif diffusion_dtype == 'bf16':
33
- diffusion_dtype = torch.bfloat16
34
-
35
- self.ae_dtype = ae_dtype
36
- self.model.dtype = diffusion_dtype
37
-
38
- self.p_p = p_p
39
- self.n_p = n_p
40
-
41
- @torch.no_grad()
42
- def encode_first_stage(self, x):
43
- with torch.autocast("cuda", dtype=self.ae_dtype):
44
- z = self.first_stage_model.encode(x)
45
- z = self.scale_factor * z
46
- return z
47
-
48
- @torch.no_grad()
49
- def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
50
- with torch.autocast("cuda", dtype=self.ae_dtype):
51
- if is_stage1:
52
- h = self.first_stage_model.denoise_encoder_s1(x)
53
- else:
54
- h = self.first_stage_model.denoise_encoder(x)
55
- moments = self.first_stage_model.quant_conv(h)
56
- posterior = DiagonalGaussianDistribution(moments)
57
- if use_sample:
58
- z = posterior.sample()
59
- else:
60
- z = posterior.mode()
61
- z = self.scale_factor * z
62
- return z
63
-
64
- @torch.no_grad()
65
- def decode_first_stage(self, z):
66
- z = 1.0 / self.scale_factor * z
67
- with torch.autocast("cuda", dtype=self.ae_dtype):
68
- out = self.first_stage_model.decode(z)
69
- return out.float()
70
-
71
- @torch.no_grad()
72
- def batchify_denoise(self, x, is_stage1=False):
73
- '''
74
- [N, C, H, W], [-1, 1], RGB
75
- '''
76
- x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
77
- return self.decode_first_stage(x)
78
-
79
- @torch.no_grad()
80
- def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1,
81
- num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False,
82
- cfg_scale_start=1.0, control_scale_start=0.0, **kwargs):
83
- '''
84
- [N, C], [-1, 1], RGB
85
- '''
86
- assert len(x) == len(p)
87
- assert color_fix_type in ['Wavelet', 'AdaIn', 'None']
88
-
89
- N = len(x)
90
- if num_samples > 1:
91
- assert N == 1
92
- N = num_samples
93
- x = x.repeat(N, 1, 1, 1)
94
- p = p * N
95
-
96
- if p_p == 'default':
97
- p_p = self.p_p
98
- if n_p == 'default':
99
- n_p = self.n_p
100
-
101
- self.sampler_config.params.num_steps = num_steps
102
- if use_linear_CFG:
103
- self.sampler_config.params.guider_config.params.scale_min = cfg_scale
104
- self.sampler_config.params.guider_config.params.scale = cfg_scale_start
105
- else:
106
- self.sampler_config.params.guider_config.params.scale_min = cfg_scale
107
- self.sampler_config.params.guider_config.params.scale = cfg_scale
108
- self.sampler_config.params.restore_cfg = restoration_scale
109
- self.sampler_config.params.s_churn = s_churn
110
- self.sampler_config.params.s_noise = s_noise
111
- self.sampler = instantiate_from_config(self.sampler_config)
112
-
113
- if seed == -1:
114
- seed = random.randint(0, 65535)
115
- seed_everything(seed)
116
-
117
- _z = self.encode_first_stage_with_denoise(x, use_sample=False)
118
- x_stage1 = self.decode_first_stage(_z)
119
- z_stage1 = self.encode_first_stage(x_stage1)
120
-
121
- c, uc = self.prepare_condition(_z, p, p_p, n_p, N)
122
-
123
- denoiser = lambda input, sigma, c, control_scale: self.denoiser(
124
- self.model, input, sigma, c, control_scale, **kwargs
125
- )
126
-
127
- noised_z = torch.randn_like(_z).to(_z.device)
128
-
129
- _samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale,
130
- use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
131
- samples = self.decode_first_stage(_samples)
132
- if color_fix_type == 'Wavelet':
133
- samples = wavelet_reconstruction(samples, x_stage1)
134
- elif color_fix_type == 'AdaIn':
135
- samples = adaptive_instance_normalization(samples, x_stage1)
136
- return samples
137
-
138
- def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64):
139
- self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward
140
- self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward
141
- self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward
142
- self.first_stage_model.denoise_encoder.forward = VAEHook(
143
- self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
144
- fast_encoder=False, color_fix=False, to_gpu=True)
145
- self.first_stage_model.encoder.forward = VAEHook(
146
- self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
147
- fast_encoder=False, color_fix=False, to_gpu=True)
148
- self.first_stage_model.decoder.forward = VAEHook(
149
- self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False,
150
- fast_encoder=False, color_fix=False, to_gpu=True)
151
-
152
- def prepare_condition(self, _z, p, p_p, n_p, N):
153
- batch = {}
154
- batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
155
- batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device)
156
- batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
157
- batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device)
158
- batch['control'] = _z
159
-
160
- batch_uc = copy.deepcopy(batch)
161
- batch_uc['txt'] = [n_p for _ in p]
162
-
163
- if not isinstance(p[0], list):
164
- batch['txt'] = [''.join([_p, p_p]) for _p in p]
165
- with torch.cuda.amp.autocast(dtype=self.ae_dtype):
166
- c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
167
- else:
168
- assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.'
169
- p_tiles = p[0]
170
- c = []
171
- for i, p_tile in enumerate(p_tiles):
172
- batch['txt'] = [''.join([p_tile, p_p])]
173
- with torch.cuda.amp.autocast(dtype=self.ae_dtype):
174
- if i == 0:
175
- _c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
176
- else:
177
- _c, _ = self.conditioner.get_unconditional_conditioning(batch, None)
178
- c.append(_c)
179
- return c, uc
180
-
181
-
182
- if __name__ == '__main__':
183
- from SUPIR.util import create_model, load_state_dict
184
-
185
- model = create_model('../../options/dev/SUPIR_paper_version.yaml')
186
-
187
- SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors'
188
- SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt'
189
- model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False)
190
- model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False)
191
- model = model.cuda()
192
-
193
- x = torch.randn(1, 3, 512, 512).cuda()
194
- p = ['a professional, detailed, high-quality photo']
195
- samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1)
 
 
 
1
+ import torch
2
+ from sgm.models.diffusion import DiffusionEngine
3
+ from sgm.util import instantiate_from_config
4
+ import copy
5
+ from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
6
+ import random
7
+ from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
8
+ from pytorch_lightning import seed_everything
9
+ from torch.nn.functional import interpolate
10
+ from SUPIR.utils.tilevae import VAEHook
11
+
12
+ class SUPIRModel(DiffusionEngine):
13
+ def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
14
+ super().__init__(*args, **kwargs)
15
+ control_model = instantiate_from_config(control_stage_config)
16
+ self.model.load_control_model(control_model)
17
+ self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
18
+ self.sampler_config = kwargs['sampler_config']
19
+
20
+ assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
21
+ if ae_dtype == 'fp32':
22
+ ae_dtype = torch.float32
23
+ elif ae_dtype == 'fp16':
24
+ raise RuntimeError('fp16 cause NaN in AE')
25
+ elif ae_dtype == 'bf16':
26
+ ae_dtype = torch.bfloat16
27
+
28
+ if diffusion_dtype == 'fp32':
29
+ diffusion_dtype = torch.float32
30
+ elif diffusion_dtype == 'fp16':
31
+ diffusion_dtype = torch.float16
32
+ elif diffusion_dtype == 'bf16':
33
+ diffusion_dtype = torch.bfloat16
34
+
35
+ self.ae_dtype = ae_dtype
36
+ self.model.dtype = diffusion_dtype
37
+
38
+ self.p_p = p_p
39
+ self.n_p = n_p
40
+
41
+ @torch.no_grad()
42
+ def encode_first_stage(self, x):
43
+ with torch.autocast("cuda", dtype=self.ae_dtype):
44
+ z = self.first_stage_model.encode(x)
45
+ z = self.scale_factor * z
46
+ return z
47
+
48
+ @torch.no_grad()
49
+ def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
50
+ with torch.autocast("cuda", dtype=self.ae_dtype):
51
+ if is_stage1:
52
+ h = self.first_stage_model.denoise_encoder_s1(x)
53
+ else:
54
+ h = self.first_stage_model.denoise_encoder(x)
55
+ moments = self.first_stage_model.quant_conv(h)
56
+ posterior = DiagonalGaussianDistribution(moments)
57
+ if use_sample:
58
+ z = posterior.sample()
59
+ else:
60
+ z = posterior.mode()
61
+ z = self.scale_factor * z
62
+ return z
63
+
64
+ @torch.no_grad()
65
+ def decode_first_stage(self, z):
66
+ z = 1.0 / self.scale_factor * z
67
+ with torch.autocast("cuda", dtype=self.ae_dtype):
68
+ out = self.first_stage_model.decode(z)
69
+ return out.float()
70
+
71
+ @torch.no_grad()
72
+ def batchify_denoise(self, x, is_stage1=False):
73
+ '''
74
+ [N, C, H, W], [-1, 1], RGB
75
+ '''
76
+ print('Start batchify_denoise')
77
+ x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
78
+ print('End batchify_denoise')
79
+ return self.decode_first_stage(x)
80
+
81
+ @torch.no_grad()
82
+ def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1,
83
+ num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False,
84
+ cfg_scale_start=1.0, control_scale_start=0.0, **kwargs):
85
+ '''
86
+ [N, C], [-1, 1], RGB
87
+ '''
88
+ assert len(x) == len(p)
89
+ assert color_fix_type in ['Wavelet', 'AdaIn', 'None']
90
+
91
+ N = len(x)
92
+ if num_samples > 1:
93
+ assert N == 1
94
+ N = num_samples
95
+ x = x.repeat(N, 1, 1, 1)
96
+ p = p * N
97
+
98
+ if p_p == 'default':
99
+ p_p = self.p_p
100
+ if n_p == 'default':
101
+ n_p = self.n_p
102
+
103
+ self.sampler_config.params.num_steps = num_steps
104
+ if use_linear_CFG:
105
+ self.sampler_config.params.guider_config.params.scale_min = cfg_scale
106
+ self.sampler_config.params.guider_config.params.scale = cfg_scale_start
107
+ else:
108
+ self.sampler_config.params.guider_config.params.scale_min = cfg_scale
109
+ self.sampler_config.params.guider_config.params.scale = cfg_scale
110
+ self.sampler_config.params.restore_cfg = restoration_scale
111
+ self.sampler_config.params.s_churn = s_churn
112
+ self.sampler_config.params.s_noise = s_noise
113
+ self.sampler = instantiate_from_config(self.sampler_config)
114
+
115
+ if seed == -1:
116
+ seed = random.randint(0, 65535)
117
+ seed_everything(seed)
118
+
119
+ _z = self.encode_first_stage_with_denoise(x, use_sample=False)
120
+ x_stage1 = self.decode_first_stage(_z)
121
+ z_stage1 = self.encode_first_stage(x_stage1)
122
+
123
+ c, uc = self.prepare_condition(_z, p, p_p, n_p, N)
124
+
125
+ denoiser = lambda input, sigma, c, control_scale: self.denoiser(
126
+ self.model, input, sigma, c, control_scale, **kwargs
127
+ )
128
+
129
+ noised_z = torch.randn_like(_z).to(_z.device)
130
+
131
+ _samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale,
132
+ use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
133
+ samples = self.decode_first_stage(_samples)
134
+ if color_fix_type == 'Wavelet':
135
+ samples = wavelet_reconstruction(samples, x_stage1)
136
+ elif color_fix_type == 'AdaIn':
137
+ samples = adaptive_instance_normalization(samples, x_stage1)
138
+ return samples
139
+
140
+ def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64):
141
+ self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward
142
+ self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward
143
+ self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward
144
+ self.first_stage_model.denoise_encoder.forward = VAEHook(
145
+ self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
146
+ fast_encoder=False, color_fix=False, to_gpu=True)
147
+ self.first_stage_model.encoder.forward = VAEHook(
148
+ self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
149
+ fast_encoder=False, color_fix=False, to_gpu=True)
150
+ self.first_stage_model.decoder.forward = VAEHook(
151
+ self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False,
152
+ fast_encoder=False, color_fix=False, to_gpu=True)
153
+
154
+ def prepare_condition(self, _z, p, p_p, n_p, N):
155
+ batch = {}
156
+ batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
157
+ batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device)
158
+ batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
159
+ batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device)
160
+ batch['control'] = _z
161
+
162
+ batch_uc = copy.deepcopy(batch)
163
+ batch_uc['txt'] = [n_p for _ in p]
164
+
165
+ if not isinstance(p[0], list):
166
+ batch['txt'] = [''.join([_p, p_p]) for _p in p]
167
+ with torch.cuda.amp.autocast(dtype=self.ae_dtype):
168
+ c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
169
+ else:
170
+ assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.'
171
+ p_tiles = p[0]
172
+ c = []
173
+ for i, p_tile in enumerate(p_tiles):
174
+ batch['txt'] = [''.join([p_tile, p_p])]
175
+ with torch.cuda.amp.autocast(dtype=self.ae_dtype):
176
+ if i == 0:
177
+ _c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
178
+ else:
179
+ _c, _ = self.conditioner.get_unconditional_conditioning(batch, None)
180
+ c.append(_c)
181
+ return c, uc
182
+
183
+
184
+ if __name__ == '__main__':
185
+ from SUPIR.util import create_model, load_state_dict
186
+
187
+ model = create_model('../../options/dev/SUPIR_paper_version.yaml')
188
+
189
+ SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors'
190
+ SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt'
191
+ model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False)
192
+ model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False)
193
+ model = model.cuda()
194
+
195
+ x = torch.randn(1, 3, 512, 512).cuda()
196
+ p = ['a professional, detailed, high-quality photo']
197
+ samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1)