Fabrice-TIERCELIN
commited on
Delete test.py
Browse files
test.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
import torch.cuda
|
2 |
-
import argparse
|
3 |
-
from SUPIR.util import create_SUPIR_model, PIL2Tensor, Tensor2PIL, convert_dtype
|
4 |
-
from PIL import Image
|
5 |
-
from llava.llava_agent import LLavaAgent
|
6 |
-
from CKPT_PTH import LLAVA_MODEL_PATH
|
7 |
-
import os
|
8 |
-
from torch.nn.functional import interpolate
|
9 |
-
|
10 |
-
if torch.cuda.device_count() >= 2:
|
11 |
-
SUPIR_device = 'cuda:0'
|
12 |
-
LLaVA_device = 'cuda:1'
|
13 |
-
elif torch.cuda.device_count() == 1:
|
14 |
-
SUPIR_device = 'cuda:0'
|
15 |
-
LLaVA_device = 'cuda:0'
|
16 |
-
else:
|
17 |
-
raise ValueError('Currently support CUDA only.')
|
18 |
-
|
19 |
-
# hyparams here
|
20 |
-
parser = argparse.ArgumentParser()
|
21 |
-
parser.add_argument("--img_dir", type=str)
|
22 |
-
parser.add_argument("--save_dir", type=str)
|
23 |
-
parser.add_argument("--upscale", type=int, default=1)
|
24 |
-
parser.add_argument("--SUPIR_sign", type=str, default='Q', choices=['F', 'Q'])
|
25 |
-
parser.add_argument("--seed", type=int, default=1234)
|
26 |
-
parser.add_argument("--min_size", type=int, default=1024)
|
27 |
-
parser.add_argument("--edm_steps", type=int, default=50)
|
28 |
-
parser.add_argument("--s_stage1", type=int, default=-1)
|
29 |
-
parser.add_argument("--s_churn", type=int, default=5)
|
30 |
-
parser.add_argument("--s_noise", type=float, default=1.003)
|
31 |
-
parser.add_argument("--s_cfg", type=float, default=7.5)
|
32 |
-
parser.add_argument("--s_stage2", type=float, default=1.)
|
33 |
-
parser.add_argument("--num_samples", type=int, default=1)
|
34 |
-
parser.add_argument("--a_prompt", type=str,
|
35 |
-
default='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
|
36 |
-
'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
|
37 |
-
'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
|
38 |
-
'hyper sharpness, perfect without deformations.')
|
39 |
-
parser.add_argument("--n_prompt", type=str,
|
40 |
-
default='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
|
41 |
-
'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
|
42 |
-
'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
|
43 |
-
'deformed, lowres, over-smooth')
|
44 |
-
parser.add_argument("--color_fix_type", type=str, default='Wavelet', choices=["None", "AdaIn", "Wavelet"])
|
45 |
-
parser.add_argument("--linear_CFG", action='store_true', default=True)
|
46 |
-
parser.add_argument("--linear_s_stage2", action='store_true', default=False)
|
47 |
-
parser.add_argument("--spt_linear_CFG", type=float, default=4.0)
|
48 |
-
parser.add_argument("--spt_linear_s_stage2", type=float, default=0.)
|
49 |
-
parser.add_argument("--ae_dtype", type=str, default="bf16", choices=['fp32', 'bf16'])
|
50 |
-
parser.add_argument("--diff_dtype", type=str, default="fp16", choices=['fp32', 'fp16', 'bf16'])
|
51 |
-
parser.add_argument("--no_llava", action='store_true', default=False)
|
52 |
-
parser.add_argument("--loading_half_params", action='store_true', default=False)
|
53 |
-
parser.add_argument("--use_tile_vae", action='store_true', default=False)
|
54 |
-
parser.add_argument("--encoder_tile_size", type=int, default=512)
|
55 |
-
parser.add_argument("--decoder_tile_size", type=int, default=64)
|
56 |
-
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
|
57 |
-
args = parser.parse_args()
|
58 |
-
print(args)
|
59 |
-
use_llava = not args.no_llava
|
60 |
-
|
61 |
-
# load SUPIR
|
62 |
-
model = create_SUPIR_model('options/SUPIR_v0.yaml', SUPIR_sign=args.SUPIR_sign)
|
63 |
-
if args.loading_half_params:
|
64 |
-
model = model.half()
|
65 |
-
if args.use_tile_vae:
|
66 |
-
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
|
67 |
-
model.ae_dtype = convert_dtype(args.ae_dtype)
|
68 |
-
model.model.dtype = convert_dtype(args.diff_dtype)
|
69 |
-
model = model.to(SUPIR_device)
|
70 |
-
# load LLaVA
|
71 |
-
if use_llava:
|
72 |
-
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
|
73 |
-
else:
|
74 |
-
llava_agent = None
|
75 |
-
|
76 |
-
os.makedirs(args.save_dir, exist_ok=True)
|
77 |
-
for img_pth in os.listdir(args.img_dir):
|
78 |
-
img_name = os.path.splitext(img_pth)[0]
|
79 |
-
|
80 |
-
LQ_ips = Image.open(os.path.join(args.img_dir, img_pth))
|
81 |
-
LQ_img, h0, w0 = PIL2Tensor(LQ_ips, upsacle=args.upscale, min_size=args.min_size)
|
82 |
-
LQ_img = LQ_img.unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
83 |
-
|
84 |
-
# step 1: Pre-denoise for LLaVA, resize to 512
|
85 |
-
LQ_img_512, h1, w1 = PIL2Tensor(LQ_ips, upsacle=args.upscale, min_size=args.min_size, fix_resize=512)
|
86 |
-
LQ_img_512 = LQ_img_512.unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
87 |
-
clean_imgs = model.batchify_denoise(LQ_img_512)
|
88 |
-
clean_PIL_img = Tensor2PIL(clean_imgs[0], h1, w1)
|
89 |
-
|
90 |
-
# step 2: LLaVA
|
91 |
-
if use_llava:
|
92 |
-
captions = llava_agent.gen_image_caption([clean_PIL_img])
|
93 |
-
else:
|
94 |
-
captions = ['']
|
95 |
-
print(captions)
|
96 |
-
|
97 |
-
# # step 3: Diffusion Process
|
98 |
-
samples = model.batchify_sample(LQ_img, captions, num_steps=args.edm_steps, restoration_scale=args.s_stage1, s_churn=args.s_churn,
|
99 |
-
s_noise=args.s_noise, cfg_scale=args.s_cfg, control_scale=args.s_stage2, seed=args.seed,
|
100 |
-
num_samples=args.num_samples, p_p=args.a_prompt, n_p=args.n_prompt, color_fix_type=args.color_fix_type,
|
101 |
-
use_linear_CFG=args.linear_CFG, use_linear_control_scale=args.linear_s_stage2,
|
102 |
-
cfg_scale_start=args.spt_linear_CFG, control_scale_start=args.spt_linear_s_stage2)
|
103 |
-
# save
|
104 |
-
for _i, sample in enumerate(samples):
|
105 |
-
Tensor2PIL(sample, h0, w0).save(f'{args.save_dir}/{img_name}_{_i}.png')
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|