Fabrice-TIERCELIN
commited on
log_information
Browse files
app.py
CHANGED
@@ -204,12 +204,12 @@ def restore_in_Xmin(
|
|
204 |
input_height, input_width, input_channel = denoise_image.shape
|
205 |
denoise_image = denoise_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
|
206 |
|
|
|
|
|
207 |
if torch.cuda.device_count() == 0:
|
208 |
gr.Warning('Set this space to GPU config to make it work.')
|
209 |
return [noisy_image, denoise_image], [denoise_image], None, None
|
210 |
|
211 |
-
denoise_image = HWC3(np.array(denoise_image))
|
212 |
-
|
213 |
if model_select != model.current_model:
|
214 |
print('load ' + model_select)
|
215 |
if model_select == 'v0-Q':
|
@@ -218,6 +218,9 @@ def restore_in_Xmin(
|
|
218 |
model.load_state_dict(ckpt_F, strict=False)
|
219 |
model.current_model = model_select
|
220 |
|
|
|
|
|
|
|
221 |
# Allocation
|
222 |
if allocation == 1:
|
223 |
return restore_in_1min(
|
@@ -335,9 +338,6 @@ def restore(
|
|
335 |
|
336 |
torch.cuda.set_device(SUPIR_device)
|
337 |
|
338 |
-
model.ae_dtype = convert_dtype(ae_dtype)
|
339 |
-
model.model.dtype = convert_dtype(diff_dtype)
|
340 |
-
|
341 |
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
342 |
LQ = np.array(input_image) / 255.0
|
343 |
LQ = np.power(LQ, gamma_correction)
|
@@ -776,7 +776,7 @@ with gr.Blocks() as interface:
|
|
776 |
result_slider,
|
777 |
result_gallery,
|
778 |
restore_information
|
779 |
-
]).
|
780 |
result_gallery
|
781 |
], outputs = [], queue = False, show_progress = False)
|
782 |
|
|
|
204 |
input_height, input_width, input_channel = denoise_image.shape
|
205 |
denoise_image = denoise_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
|
206 |
|
207 |
+
denoise_image = HWC3(np.array(denoise_image))
|
208 |
+
|
209 |
if torch.cuda.device_count() == 0:
|
210 |
gr.Warning('Set this space to GPU config to make it work.')
|
211 |
return [noisy_image, denoise_image], [denoise_image], None, None
|
212 |
|
|
|
|
|
213 |
if model_select != model.current_model:
|
214 |
print('load ' + model_select)
|
215 |
if model_select == 'v0-Q':
|
|
|
218 |
model.load_state_dict(ckpt_F, strict=False)
|
219 |
model.current_model = model_select
|
220 |
|
221 |
+
model.ae_dtype = convert_dtype(ae_dtype)
|
222 |
+
model.model.dtype = convert_dtype(diff_dtype)
|
223 |
+
|
224 |
# Allocation
|
225 |
if allocation == 1:
|
226 |
return restore_in_1min(
|
|
|
338 |
|
339 |
torch.cuda.set_device(SUPIR_device)
|
340 |
|
|
|
|
|
|
|
341 |
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
342 |
LQ = np.array(input_image) / 255.0
|
343 |
LQ = np.power(LQ, gamma_correction)
|
|
|
776 |
result_slider,
|
777 |
result_gallery,
|
778 |
restore_information
|
779 |
+
]).then(fn = log_information, inputs = [
|
780 |
result_gallery
|
781 |
], outputs = [], queue = False, show_progress = False)
|
782 |
|