Fabrice-TIERCELIN
commited on
Compare with another AI to see where the error is
Browse files- GenVideo_app.py +91 -0
GenVideo_app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
|
4 |
+
from diffusers.utils import export_to_gif
|
5 |
+
from diffusers.utils import export_to_video
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
+
import uuid
|
8 |
+
import spaces
|
9 |
+
|
10 |
+
# Available adapters (replace with your actual adapter names)
|
11 |
+
adapter_options = {
|
12 |
+
"zoom-out":"guoyww/animatediff-motion-lora-zoom-out",
|
13 |
+
"zoom-in":"guoyww/animatediff-motion-lora-zoom-in",
|
14 |
+
"pan-left":"guoyww/animatediff-motion-lora-pan-left",
|
15 |
+
"pan-right":"guoyww/animatediff-motion-lora-pan-right",
|
16 |
+
"roll-clockwise":"guoyww/animatediff-motion-lora-rolling-clockwise",
|
17 |
+
"roll-anticlockwise":"guoyww/animatediff-motion-lora-rolling-anticlockwise",
|
18 |
+
"tilt-up":"guoyww/animatediff-motion-lora-tilt-up",
|
19 |
+
"tilt-down":"guoyww/animatediff-motion-lora-tilt-down"
|
20 |
+
}
|
21 |
+
|
22 |
+
def load_cached_examples():
|
23 |
+
examples = [
|
24 |
+
["a cat playing with a ball of yarn", "blurry", 7.5, 12, ["zoom-in"]],
|
25 |
+
["a dog running in a field", "dark, indoors", 8.0, 8, ["pan-left", "tilt-up"]],
|
26 |
+
]
|
27 |
+
return examples
|
28 |
+
|
29 |
+
device = "cuda"
|
30 |
+
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
|
31 |
+
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
32 |
+
|
33 |
+
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to(device)
|
34 |
+
scheduler = DDIMScheduler.from_pretrained(
|
35 |
+
model_id,
|
36 |
+
subfolder="scheduler",
|
37 |
+
clip_sample=False,
|
38 |
+
timestep_spacing="linspace",
|
39 |
+
beta_schedule="linear",
|
40 |
+
steps_offset=1,
|
41 |
+
)
|
42 |
+
pipe.scheduler = scheduler
|
43 |
+
|
44 |
+
@spaces.GPU
|
45 |
+
def generate_video(prompt,negative_prompt, guidance_scale, num_inference_steps, adapter_choices):
|
46 |
+
|
47 |
+
pipe.to(device)
|
48 |
+
|
49 |
+
# Set adapters based on user selection
|
50 |
+
if adapter_choices:
|
51 |
+
for i in range(len(adapter_choices)):
|
52 |
+
adapter_name = adapter_choices[i]
|
53 |
+
pipe.load_lora_weights(
|
54 |
+
adapter_options[adapter_name], adapter_name=adapter_name,
|
55 |
+
)
|
56 |
+
pipe.set_adapters(adapter_choices, adapter_weights=[1.0] * len(adapter_choices))
|
57 |
+
print(adapter_choices)
|
58 |
+
|
59 |
+
output = pipe(
|
60 |
+
prompt=prompt,
|
61 |
+
negative_prompt=negative_prompt,
|
62 |
+
num_frames=16,
|
63 |
+
guidance_scale=guidance_scale,
|
64 |
+
num_inference_steps=num_inference_steps,
|
65 |
+
)
|
66 |
+
name = str(uuid.uuid4()).replace("-", "")
|
67 |
+
path = f"/tmp/{name}.mp4"
|
68 |
+
export_to_video(output.frames[0], path, fps=10)
|
69 |
+
return path
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
iface = gr.Interface(
|
74 |
+
theme=gr.themes.Soft(primary_hue="cyan", secondary_hue="teal"),
|
75 |
+
fn=generate_video,
|
76 |
+
inputs=[
|
77 |
+
gr.Textbox(label="Prompt"),
|
78 |
+
gr.Textbox(label="Negative Prompt"),
|
79 |
+
gr.Slider(minimum=0.5, maximum=10, value=7.5, label="Guidance Scale"),
|
80 |
+
gr.Slider(minimum=4, maximum=24, step=4, value=4, label="Inference Steps"),
|
81 |
+
gr.CheckboxGroup(adapter_options.keys(), label="Adapter Choice",type='value'),
|
82 |
+
],
|
83 |
+
outputs=gr.Video(label="Generated Video"),
|
84 |
+
examples = [
|
85 |
+
["Urban ambiance, man walking, neon lights, rain, wet floor, high quality", "bad quality", 7.5, 24, []],
|
86 |
+
["Nature, farms, mountains in background, drone shot, high quality","bad quality" ,8.0, 24, []],
|
87 |
+
],
|
88 |
+
cache_examples=True
|
89 |
+
)
|
90 |
+
|
91 |
+
iface.launch()
|