Spaces:
Sleeping
Sleeping
from fastai.collab import load_learner | |
from fastapi import FastAPI | |
from fastapi.middleware.cors import CORSMiddleware | |
from custom_models import DotProductBias | |
import asyncio | |
import uvicorn | |
import pandas as pd | |
import os | |
# FastAPI app | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Model filename | |
model_filename = 'model.pkl' | |
async def setup_learner(): | |
learn = load_learner(model_filename) | |
learn.dls.device = 'cpu' | |
return learn | |
learn = None | |
async def startup_event(): | |
"""Setup the learner on server start""" | |
global learn | |
loop = asyncio.get_event_loop() # get event loop | |
tasks = [asyncio.ensure_future(setup_learner())] # assign some task | |
learn = (await asyncio.gather(*tasks))[0] | |
async def analyze(user_id: str): | |
not_listened_songs = ["Revelry, Kings of Leon, 2008", "Gears, Miss May I, 2010", "Sexy Bitch, David Guetta, 2009"] | |
input_dataframe = pd.DataFrame({'user_id': ["440abe26940ae9d9268157222a4a3d5735d44ed8"] * len(not_listened_songs), 'entry': not_listened_songs}) | |
test_dl = learn.dls.test_dl(input_dataframe) | |
predictions = learn.get_preds(dl=test_dl) | |
print(predictions) | |
#pred = learn.predict(file) | |
return {"result": predictions[0].numpy().tolist()} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860))) | |