jsr90's picture
Upload 2 files
dfcb06d
import joblib
import gradio as gr
import pandas as pd
pipe = joblib.load('pipe.joblib')
def pred(pi, pt, pla, ss, pr, gs):
df = pd.DataFrame(
{
"Pelvic incidence": pi,
"Pelvic tilt": pt,
"Lumbar lordosis angle": pla,
"Sacral slope": ss,
"pelvic radius": pr,
"grade of spondylolisthesis": gs
},
index=[0]
)
prediction = pipe.predict(df.values)
if (prediction[0]==0):
output = 'Normal'
elif (prediction[0]==1):
output = 'Anormal'
return "La predicción es "+output+'.'
iface = gr.Interface(
pred,
[
gr.Slider(-99,99,label="Pelvic incidence", value=0),
gr.Slider(-99,99,label="Pelvic tilt", value=0),
gr.Slider(-99,99,label="Lumbar lordosis angle", value=0),
gr.Slider(-99,99,label="Sacral slope", value=0),
gr.Slider(-99,99,label="Pelvic radius", value=0),
gr.Slider(-99,99,label="Grade of spondylolisthesis", value=0),
],
"text",
examples=[
[63.0278175, 22.55258597, 39.60911701, 40.47523153, 98.67291675, -0.254399986],
[40.34929637, 10.19474845, 37.96774659, 30.15454792, 128.0099272, 0.458901373],
[118.1446548, 38.44950127, 50.83851954, 79.69515353, 81.0245406, 74.04376736],
[33.78884314, 3.675109986, 25.5, 30.11373315, 128.3253556, -1.776111234],
],
title = 'Orthopaedic column prediction',
)
iface.launch()