Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import nltk | |
import numpy as np | |
import pandas as pd | |
from librosa import load, resample | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
# Constants | |
filename = "df10k_SP500_2020.csv.zip" | |
model_name = "sentence-transformers/msmarco-distilbert-base-v4" | |
max_sequence_length = 512 | |
embeddings_filename = "df10k_embeddings_msmarco-distilbert-base-v4.npz" | |
asr_model = "facebook/wav2vec2-xls-r-300m-21-to-en" | |
# Load corpus | |
df = pd.read_csv(filename) | |
df.drop_duplicates(inplace=True) | |
print(f"Number of documents: {len(df)}") | |
nltk.download("punkt") | |
corpus = [] | |
sentence_count = [] | |
for _, row in df.iterrows(): | |
# We're interested in the 'mdna' column: 'Management discussion and analysis' | |
sentences = nltk.tokenize.sent_tokenize(str(row["mdna"]), language="english") | |
sentence_count.append(len(sentences)) | |
for _, s in enumerate(sentences): | |
corpus.append(s) | |
print(f"Number of sentences: {len(corpus)}") | |
# Load pre-embedded corpus | |
corpus_embeddings = np.load(embeddings_filename)["arr_0"] | |
print(f"Number of embeddings: {corpus_embeddings.shape[0]}") | |
# Load embedding model | |
model = SentenceTransformer(model_name) | |
model.max_seq_length = max_sequence_length | |
# Load speech to text model | |
asr = pipeline( | |
"automatic-speech-recognition", model=asr_model, feature_extractor=asr_model | |
) | |
def find_sentences(query, hits): | |
query_embedding = model.encode(query) | |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=hits) | |
hits = hits[0] | |
output = pd.DataFrame( | |
columns=["Ticker", "Form type", "Filing date", "Text", "Score"] | |
) | |
for hit in hits: | |
corpus_id = hit["corpus_id"] | |
# Find source document based on sentence index | |
count = 0 | |
for idx, c in enumerate(sentence_count): | |
count += c | |
if corpus_id > count - 1: | |
continue | |
else: | |
doc = df.iloc[idx] | |
new_row = { | |
"Ticker": doc["ticker"], | |
"Form type": doc["form_type"], | |
"Filing date": doc["filing_date"], | |
"Text": corpus[corpus_id][:80], | |
"Score": "{:.2f}".format(hit["score"]), | |
} | |
output = pd.concat([output, pd.DataFrame([new_row])], ignore_index=True) | |
break | |
return output | |
def process(input_selection, query, filepath, hits): | |
if input_selection == "speech": | |
speech, sampling_rate = load(filepath) | |
if sampling_rate != 16000: | |
speech = resample(speech, orig_sr=sampling_rate, target_sr=16000) | |
text = asr(speech)["text"] | |
else: | |
text = query | |
return text, find_sentences(text, hits) | |
# Gradio inputs | |
buttons = gr.Radio( | |
["text", "speech"], type="value", value="speech", label="Input selection" | |
) | |
text_query = gr.Textbox( | |
lines=1, | |
label="Text input", | |
value="The company is under investigation by tax authorities for potential fraud.", | |
) | |
mic = gr.Audio( | |
source="microphone", type="filepath", label="Speech input", optional=True | |
) | |
slider = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Number of hits") | |
# Gradio outputs | |
speech_query = gr.Textbox(type="text", label="Query string") | |
results = gr.Dataframe( | |
type="pandas", | |
headers=["Ticker", "Form type", "Filing date", "Text", "Score"], | |
label="Query results", | |
) | |
iface = gr.Interface( | |
theme="huggingface", | |
description="This Spaces lets you query a text corpus containing 2020 annual filings for all S&P500 companies. You can type a text query in English, or record an audio query in 21 languages. You can find a technical deep dive at https://www.youtube.com/watch?v=YPme-gR0f80", | |
fn=process, | |
inputs=[buttons, text_query, mic, slider], | |
outputs=[speech_query, results], | |
examples=[ | |
[ | |
"speech", | |
"Nos ventes internationales ont significativement augmenté.", | |
"sales_16k_fr.wav", | |
3, | |
], | |
[ | |
"speech", | |
"Le prix de l'énergie pourrait avoir un impact négatif dans le futur.", | |
"energy_16k_fr.wav", | |
3, | |
], | |
[ | |
"speech", | |
"El precio de la energía podría tener un impacto negativo en el futuro.", | |
"energy_24k_es.wav", | |
3, | |
], | |
[ | |
"speech", | |
"Mehrere Steuerbehörden untersuchen unser Unternehmen.", | |
"tax_24k_de.wav", | |
3, | |
], | |
], | |
) | |
iface.launch() | |