Spaces:
Runtime error
Runtime error
import traceback | |
import logging | |
logger = logging.getLogger(__name__) | |
import numpy as np | |
import soundfile as sf | |
import torch | |
from io import BytesIO | |
from infer.lib.audio import load_audio, wav2 | |
from infer.lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from infer.modules.vc.pipeline import Pipeline | |
from infer.modules.vc.utils import * | |
class VC: | |
def __init__(self, config): | |
self.n_spk = None | |
self.tgt_sr = None | |
self.net_g = None | |
self.pipeline = None | |
self.cpt = None | |
self.version = None | |
self.if_f0 = None | |
self.version = None | |
self.hubert_model = None | |
self.config = config | |
def get_vc(self, sid, *to_return_protect): | |
logger.info("Get sid: " + sid) | |
to_return_protect0 = { | |
"visible": self.if_f0 != 0, | |
"value": to_return_protect[0] | |
if self.if_f0 != 0 and to_return_protect | |
else 0.5, | |
"__type__": "update", | |
} | |
to_return_protect1 = { | |
"visible": self.if_f0 != 0, | |
"value": to_return_protect[1] | |
if self.if_f0 != 0 and to_return_protect | |
else 0.33, | |
"__type__": "update", | |
} | |
if not sid: | |
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 | |
logger.info("Clean model cache") | |
del ( | |
self.net_g, | |
self.n_spk, | |
self.vc, | |
self.hubert_model, | |
self.tgt_sr, | |
) # ,cpt | |
self.hubert_model = ( | |
self.net_g | |
) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
###楼下不这么折腾清理不干净 | |
self.if_f0 = self.cpt.get("f0", 1) | |
self.version = self.cpt.get("version", "v1") | |
if self.version == "v1": | |
if self.if_f0 == 1: | |
self.net_g = SynthesizerTrnMs256NSFsid( | |
*self.cpt["config"], is_half=self.config.is_half | |
) | |
else: | |
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"]) | |
elif self.version == "v2": | |
if self.if_f0 == 1: | |
self.net_g = SynthesizerTrnMs768NSFsid( | |
*self.cpt["config"], is_half=self.config.is_half | |
) | |
else: | |
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"]) | |
del self.net_g, self.cpt | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return ( | |
{"visible": False, "__type__": "update"}, | |
{ | |
"visible": True, | |
"value": to_return_protect0, | |
"__type__": "update", | |
}, | |
{ | |
"visible": True, | |
"value": to_return_protect1, | |
"__type__": "update", | |
}, | |
"", | |
"", | |
) | |
person = f'{os.getenv("weight_root")}/{sid}' | |
logger.info(f"Loading: {person}") | |
self.cpt = torch.load(person, map_location="cpu") | |
self.tgt_sr = self.cpt["config"][-1] | |
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
self.if_f0 = self.cpt.get("f0", 1) | |
self.version = self.cpt.get("version", "v1") | |
synthesizer_class = { | |
("v1", 1): SynthesizerTrnMs256NSFsid, | |
("v1", 0): SynthesizerTrnMs256NSFsid_nono, | |
("v2", 1): SynthesizerTrnMs768NSFsid, | |
("v2", 0): SynthesizerTrnMs768NSFsid_nono, | |
} | |
self.net_g = synthesizer_class.get( | |
(self.version, self.if_f0), SynthesizerTrnMs256NSFsid | |
)(*self.cpt["config"], is_half=self.config.is_half) | |
del self.net_g.enc_q | |
self.net_g.load_state_dict(self.cpt["weight"], strict=False) | |
self.net_g.eval().to(self.config.device) | |
if self.config.is_half: | |
self.net_g = self.net_g.half() | |
else: | |
self.net_g = self.net_g.float() | |
self.pipeline = Pipeline(self.tgt_sr, self.config) | |
n_spk = self.cpt["config"][-3] | |
index = {"value": get_index_path_from_model(sid), "__type__": "update"} | |
logger.info("Select index: " + index["value"]) | |
return ( | |
( | |
{"visible": True, "maximum": n_spk, "__type__": "update"}, | |
to_return_protect0, | |
to_return_protect1, | |
index, | |
index, | |
) | |
if to_return_protect | |
else {"visible": True, "maximum": n_spk, "__type__": "update"} | |
) | |
def vc_single( | |
self, | |
sid, | |
input_audio_path, | |
f0_up_key, | |
f0_file, | |
f0_method, | |
file_index, | |
file_index2, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
): | |
if input_audio_path is None: | |
return "You need to upload an audio", None | |
f0_up_key = int(f0_up_key) | |
try: | |
audio = load_audio(input_audio_path, 16000) | |
audio_max = np.abs(audio).max() / 0.95 | |
if audio_max > 1: | |
audio /= audio_max | |
times = [0, 0, 0] | |
if self.hubert_model is None: | |
self.hubert_model = load_hubert(self.config) | |
file_index = ( | |
( | |
file_index.strip(" ") | |
.strip('"') | |
.strip("\n") | |
.strip('"') | |
.strip(" ") | |
.replace("trained", "added") | |
) | |
if file_index != "" | |
else file_index2 | |
) # 防止小白写错,自动帮他替换掉 | |
audio_opt = self.pipeline.pipeline( | |
self.hubert_model, | |
self.net_g, | |
sid, | |
audio, | |
input_audio_path, | |
times, | |
f0_up_key, | |
f0_method, | |
file_index, | |
index_rate, | |
self.if_f0, | |
filter_radius, | |
self.tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
self.version, | |
protect, | |
f0_file, | |
) | |
if self.tgt_sr != resample_sr >= 16000: | |
self.tgt_sr = resample_sr | |
index_info = ( | |
"Index:\n%s." % file_index | |
if os.path.exists(file_index) | |
else "Index not used." | |
) | |
return ( | |
"Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs." | |
% (index_info, *times), | |
(self.tgt_sr, audio_opt), | |
) | |
except: | |
info = traceback.format_exc() | |
logger.warn(info) | |
return info, (None, None) | |
def vc_multi( | |
self, | |
sid, | |
dir_path, | |
opt_root, | |
paths, | |
f0_up_key, | |
f0_method, | |
file_index, | |
file_index2, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
format1, | |
): | |
try: | |
dir_path = ( | |
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
) # 防止小白拷路径头尾带了空格和"和回车 | |
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
os.makedirs(opt_root, exist_ok=True) | |
try: | |
if dir_path != "": | |
paths = [ | |
os.path.join(dir_path, name) for name in os.listdir(dir_path) | |
] | |
else: | |
paths = [path.name for path in paths] | |
except: | |
traceback.print_exc() | |
paths = [path.name for path in paths] | |
infos = [] | |
for path in paths: | |
info, opt = self.vc_single( | |
sid, | |
path, | |
f0_up_key, | |
None, | |
f0_method, | |
file_index, | |
file_index2, | |
# file_big_npy, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
) | |
if "Success" in info: | |
try: | |
tgt_sr, audio_opt = opt | |
if format1 in ["wav", "flac"]: | |
sf.write( | |
"%s/%s.%s" | |
% (opt_root, os.path.basename(path), format1), | |
audio_opt, | |
tgt_sr, | |
) | |
else: | |
path = "%s/%s.%s" % (opt_root, os.path.basename(path), format1) | |
with BytesIO() as wavf: | |
sf.write( | |
wavf, | |
audio_opt, | |
tgt_sr, | |
format="wav" | |
) | |
wavf.seek(0, 0) | |
with open(path, "wb") as outf: | |
wav2(wavf, outf, format1) | |
except: | |
info += traceback.format_exc() | |
infos.append("%s->%s" % (os.path.basename(path), info)) | |
yield "\n".join(infos) | |
yield "\n".join(infos) | |
except: | |
yield traceback.format_exc() | |