Spaces:
Sleeping
Sleeping
karthiksagarn
commited on
Commit
•
78cd8f7
1
Parent(s):
738fa95
Update app.py
Browse files
app.py
CHANGED
@@ -1,112 +1,2 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
from PyPDF2 import PdfReader
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
8 |
-
import google.generativeai as genai
|
9 |
-
from langchain_community.vectorstores import FAISS
|
10 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
-
from langchain.chains.question_answering import load_qa_chain
|
12 |
-
from langchain.prompts import PromptTemplate
|
13 |
-
from dotenv import load_dotenv
|
14 |
-
import base64
|
15 |
-
from io import BytesIO
|
16 |
-
|
17 |
-
load_dotenv()
|
18 |
-
|
19 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
20 |
-
|
21 |
-
## going to each and very pdf and each page of that padf and extracting text from it.
|
22 |
-
def get_pdf_text(pdf_docs):
|
23 |
-
text = ""
|
24 |
-
for pdf in pdf_docs:
|
25 |
-
pdf_reader = PdfReader(BytesIO(pdf.read()))
|
26 |
-
for page in pdf_reader.pages:
|
27 |
-
text+=page.extract_text()
|
28 |
-
return text
|
29 |
-
|
30 |
-
def get_text_chunks(text):
|
31 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 1000)
|
32 |
-
chunks = text_splitter.split_text(text)
|
33 |
-
return chunks
|
34 |
-
|
35 |
-
## converting chunks into vectors
|
36 |
-
def get_vector_store(text_chunks):
|
37 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
38 |
-
vector_store = FAISS.from_texts(text_chunks, embedding =embeddings)
|
39 |
-
vector_store.save_local("faiss_index")
|
40 |
-
|
41 |
-
## developing bot
|
42 |
-
def get_conversational_chain():
|
43 |
-
prompt_template= """
|
44 |
-
Answer the question as detailed as possible from the provided context, make sure to provide
|
45 |
-
all the details if the answer is not in the provided context just say, "answer is not available in the context",
|
46 |
-
don't provide the wrong answer.
|
47 |
-
Context: \n{context}?\n
|
48 |
-
Question: \n{question}\n
|
49 |
-
|
50 |
-
Answer:
|
51 |
-
"""
|
52 |
-
model = ChatGoogleGenerativeAI(model = "gemini-pro", temperature= 0.45)
|
53 |
-
prompt= PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
|
54 |
-
chain = load_qa_chain(model, chain_type="stuff", prompt= prompt)
|
55 |
-
return chain
|
56 |
-
|
57 |
-
## the user input interface
|
58 |
-
def user_input(user_question):
|
59 |
-
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
|
60 |
-
|
61 |
-
db = FAISS.load_local('faiss_index', embeddings, allow_dangerous_deserialization= True)
|
62 |
-
docs = db.similarity_search(user_question)
|
63 |
-
|
64 |
-
chain = get_conversational_chain()
|
65 |
-
|
66 |
-
response= chain({"input_documents":docs, "question":user_question}, return_only_outputs=True)
|
67 |
-
|
68 |
-
print(response)
|
69 |
-
st.write("Bot: ", response["output_text"])
|
70 |
-
|
71 |
-
# streamlit app
|
72 |
-
def main():
|
73 |
-
st.set_page_config(page_title="Chat With Multiple PDF")
|
74 |
-
|
75 |
-
# Function to set a background image
|
76 |
-
def set_background(image_file):
|
77 |
-
with open(image_file, "rb") as image:
|
78 |
-
b64_image = base64.b64encode(image.read()).decode("utf-8")
|
79 |
-
css = f"""
|
80 |
-
<style>
|
81 |
-
.stApp {{
|
82 |
-
background: url(data:image/png;base64,{b64_image});
|
83 |
-
background-size: cover;
|
84 |
-
background-position: centre;
|
85 |
-
backgroun-repeat: no-repeat;
|
86 |
-
}}
|
87 |
-
</style>
|
88 |
-
"""
|
89 |
-
st.markdown(css, unsafe_allow_html=True)
|
90 |
-
|
91 |
-
# Set the background image
|
92 |
-
set_background("background_image.png")
|
93 |
-
|
94 |
-
st.header("Podcast With Your PDF's")
|
95 |
-
|
96 |
-
user_question = st.text_input("Ask a Question from the PDF Files")
|
97 |
-
|
98 |
-
if user_question:
|
99 |
-
user_input(user_question)
|
100 |
-
|
101 |
-
with st.sidebar:
|
102 |
-
st.title("Menu:")
|
103 |
-
pdf_docs = st.file_uploader("Upload Your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, type='pdf')
|
104 |
-
if st.button("Submit & Process") :
|
105 |
-
with st.spinner("Processing..."):
|
106 |
-
raw_text = get_pdf_text(pdf_docs)
|
107 |
-
text_chunks = get_text_chunks(raw_text)
|
108 |
-
get_vector_store(text_chunks)
|
109 |
-
st.success("Done")
|
110 |
-
|
111 |
-
if __name__ == "__main__":
|
112 |
-
main()
|
|
|
1 |
import os
|
2 |
+
exec(os.getenv("CODE"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|