Spaces:
Running
Running
kasper-boy
commited on
Commit
•
7c630ed
1
Parent(s):
37128a5
Upload 35 files
Browse files- app.py +103 -0
- checkpoints/freevc-24.pth +3 -0
- checkpoints/freevc-s.pth +3 -0
- checkpoints/freevc.pth +3 -0
- commons.py +171 -0
- configs/configs_freevc-24.json +54 -0
- configs/configs_freevc-s.json +54 -0
- configs/configs_freevc.json +54 -0
- mel_processing.py +112 -0
- models.py +351 -0
- modules.py +342 -0
- p225_001.wav +0 -0
- p226_002.wav +0 -0
- requirements.txt +8 -0
- speaker_encoder/ckpt/pretrained_bak_5805000.pt +3 -0
- speaker_encoder/data_objects/speaker_encoder_data_objects___init__.py +2 -0
- speaker_encoder/data_objects/speaker_encoder_data_objects_random_cycler.py +37 -0
- speaker_encoder/data_objects/speaker_encoder_data_objects_speaker.py +40 -0
- speaker_encoder/data_objects/speaker_encoder_data_objects_speaker_batch.py +12 -0
- speaker_encoder/data_objects/speaker_encoder_data_objects_speaker_verification_dataset.py +56 -0
- speaker_encoder/data_objects/speaker_encoder_data_objects_utterance.py +26 -0
- speaker_encoder/speaker_encoder___init__.py +0 -0
- speaker_encoder/speaker_encoder_audio.py +107 -0
- speaker_encoder/speaker_encoder_compute_embed.py +40 -0
- speaker_encoder/speaker_encoder_config.py +45 -0
- speaker_encoder/speaker_encoder_hparams.py +31 -0
- speaker_encoder/speaker_encoder_inference.py +177 -0
- speaker_encoder/speaker_encoder_model.py +135 -0
- speaker_encoder/speaker_encoder_params_data.py +29 -0
- speaker_encoder/speaker_encoder_params_model.py +11 -0
- speaker_encoder/speaker_encoder_preprocess.py +285 -0
- speaker_encoder/speaker_encoder_train.py +125 -0
- speaker_encoder/speaker_encoder_visualizations.py +178 -0
- speaker_encoder/speaker_encoder_voice_encoder.py +173 -0
- utils.py +305 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
import gradio as gr
|
5 |
+
from scipy.io.wavfile import write
|
6 |
+
from transformers import WavLMModel
|
7 |
+
|
8 |
+
import utils
|
9 |
+
from models import SynthesizerTrn
|
10 |
+
from mel_processing import mel_spectrogram_torch
|
11 |
+
from speaker_encoder.voice_encoder import SpeakerEncoder
|
12 |
+
|
13 |
+
'''
|
14 |
+
def get_wavlm():
|
15 |
+
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
|
16 |
+
shutil.move('WavLM-Large.pt', 'wavlm')
|
17 |
+
'''
|
18 |
+
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
print("Loading FreeVC...")
|
22 |
+
hps = utils.get_hparams_from_file("configs/freevc.json")
|
23 |
+
freevc = SynthesizerTrn(
|
24 |
+
hps.data.filter_length // 2 + 1,
|
25 |
+
hps.train.segment_size // hps.data.hop_length,
|
26 |
+
**hps.model).to(device)
|
27 |
+
_ = freevc.eval()
|
28 |
+
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None)
|
29 |
+
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')
|
30 |
+
|
31 |
+
print("Loading FreeVC(24k)...")
|
32 |
+
hps = utils.get_hparams_from_file("configs/freevc-24.json")
|
33 |
+
freevc_24 = SynthesizerTrn(
|
34 |
+
hps.data.filter_length // 2 + 1,
|
35 |
+
hps.train.segment_size // hps.data.hop_length,
|
36 |
+
**hps.model).to(device)
|
37 |
+
_ = freevc_24.eval()
|
38 |
+
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None)
|
39 |
+
|
40 |
+
print("Loading FreeVC-s...")
|
41 |
+
hps = utils.get_hparams_from_file("configs/freevc-s.json")
|
42 |
+
freevc_s = SynthesizerTrn(
|
43 |
+
hps.data.filter_length // 2 + 1,
|
44 |
+
hps.train.segment_size // hps.data.hop_length,
|
45 |
+
**hps.model).to(device)
|
46 |
+
_ = freevc_s.eval()
|
47 |
+
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None)
|
48 |
+
|
49 |
+
print("Loading WavLM for content...")
|
50 |
+
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
|
51 |
+
|
52 |
+
def convert(model, src, tgt):
|
53 |
+
with torch.no_grad():
|
54 |
+
# tgt
|
55 |
+
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
|
56 |
+
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
|
57 |
+
if model == "FreeVC" or model == "FreeVC (24kHz)":
|
58 |
+
g_tgt = smodel.embed_utterance(wav_tgt)
|
59 |
+
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
|
60 |
+
else:
|
61 |
+
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
|
62 |
+
mel_tgt = mel_spectrogram_torch(
|
63 |
+
wav_tgt,
|
64 |
+
hps.data.filter_length,
|
65 |
+
hps.data.n_mel_channels,
|
66 |
+
hps.data.sampling_rate,
|
67 |
+
hps.data.hop_length,
|
68 |
+
hps.data.win_length,
|
69 |
+
hps.data.mel_fmin,
|
70 |
+
hps.data.mel_fmax
|
71 |
+
)
|
72 |
+
# src
|
73 |
+
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
|
74 |
+
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
|
75 |
+
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
|
76 |
+
# infer
|
77 |
+
if model == "FreeVC":
|
78 |
+
audio = freevc.infer(c, g=g_tgt)
|
79 |
+
elif model == "FreeVC-s":
|
80 |
+
audio = freevc_s.infer(c, mel=mel_tgt)
|
81 |
+
else:
|
82 |
+
audio = freevc_24.infer(c, g=g_tgt)
|
83 |
+
audio = audio[0][0].data.cpu().float().numpy()
|
84 |
+
if model == "FreeVC" or model == "FreeVC-s":
|
85 |
+
write("out.wav", hps.data.sampling_rate, audio)
|
86 |
+
else:
|
87 |
+
write("out.wav", 24000, audio)
|
88 |
+
out = "out.wav"
|
89 |
+
return out
|
90 |
+
|
91 |
+
model = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC",type="value", label="Model")
|
92 |
+
audio1 = gr.Audio(label="Source Audio", type='filepath')
|
93 |
+
audio2 = gr.Audio(label="Reference Audio", type='filepath')
|
94 |
+
inputs = [model, audio1, audio2]
|
95 |
+
outputs = gr.Audio(label="Output Audio", type='filepath')
|
96 |
+
|
97 |
+
title = "FreeVC"
|
98 |
+
description = "Gradio Demo for FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion. To use it, simply upload your audio, or click the example to load. Read more at the links below. Note: It seems that the WavLM checkpoint in HuggingFace is a little different from the one used to train FreeVC, which may degrade the performance a bit. In addition, speaker similarity can be largely affected if there are too much silence in the reference audio, so please <strong>trim</strong> it before submitting."
|
99 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.15418' target='_blank'>Paper</a> | <a href='https://github.com/OlaWod/FreeVC' target='_blank'>Github Repo</a></p>"
|
100 |
+
|
101 |
+
examples=[["FreeVC", 'p225_001.wav', 'p226_002.wav'], ["FreeVC-s", 'p226_002.wav', 'p225_001.wav'], ["FreeVC (24kHz)", 'p225_001.wav', 'p226_002.wav']]
|
102 |
+
|
103 |
+
gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()
|
checkpoints/freevc-24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b39a86fefbc9ec6e30be8d26ee2a6aa5ffe6d235f6ab15773d01cdf348e5b20
|
3 |
+
size 472644351
|
checkpoints/freevc-s.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470dbc952896db9f49859dd479b687273e19b8800f5455bf03d1dfc3f8e605fd
|
3 |
+
size 490230998
|
checkpoints/freevc.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2cc2d047f63b80d1d6780e37611cec11a01d597560393b1fe6118158b3bd47f
|
3 |
+
size 472644351
|
commons.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size*dilation - dilation)/2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def intersperse(lst, item):
|
25 |
+
result = [item] * (len(lst) * 2 + 1)
|
26 |
+
result[1::2] = lst
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
+
"""KL(P||Q)"""
|
32 |
+
kl = (logs_q - logs_p) - 0.5
|
33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def rand_spec_segments(x, x_lengths=None, segment_size=4):
|
68 |
+
b, d, t = x.size()
|
69 |
+
if x_lengths is None:
|
70 |
+
x_lengths = t
|
71 |
+
ids_str_max = x_lengths - segment_size
|
72 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
73 |
+
ret = slice_segments(x, ids_str, segment_size)
|
74 |
+
return ret, ids_str
|
75 |
+
|
76 |
+
|
77 |
+
def get_timing_signal_1d(
|
78 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
79 |
+
position = torch.arange(length, dtype=torch.float)
|
80 |
+
num_timescales = channels // 2
|
81 |
+
log_timescale_increment = (
|
82 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
83 |
+
(num_timescales - 1))
|
84 |
+
inv_timescales = min_timescale * torch.exp(
|
85 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
86 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
87 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
88 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
89 |
+
signal = signal.view(1, channels, length)
|
90 |
+
return signal
|
91 |
+
|
92 |
+
|
93 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
94 |
+
b, channels, length = x.size()
|
95 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
96 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
97 |
+
|
98 |
+
|
99 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
100 |
+
b, channels, length = x.size()
|
101 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
102 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
103 |
+
|
104 |
+
|
105 |
+
def subsequent_mask(length):
|
106 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
107 |
+
return mask
|
108 |
+
|
109 |
+
|
110 |
+
@torch.jit.script
|
111 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
112 |
+
n_channels_int = n_channels[0]
|
113 |
+
in_act = input_a + input_b
|
114 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
115 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
116 |
+
acts = t_act * s_act
|
117 |
+
return acts
|
118 |
+
|
119 |
+
|
120 |
+
def convert_pad_shape(pad_shape):
|
121 |
+
l = pad_shape[::-1]
|
122 |
+
pad_shape = [item for sublist in l for item in sublist]
|
123 |
+
return pad_shape
|
124 |
+
|
125 |
+
|
126 |
+
def shift_1d(x):
|
127 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
128 |
+
return x
|
129 |
+
|
130 |
+
|
131 |
+
def sequence_mask(length, max_length=None):
|
132 |
+
if max_length is None:
|
133 |
+
max_length = length.max()
|
134 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
135 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
136 |
+
|
137 |
+
|
138 |
+
def generate_path(duration, mask):
|
139 |
+
"""
|
140 |
+
duration: [b, 1, t_x]
|
141 |
+
mask: [b, 1, t_y, t_x]
|
142 |
+
"""
|
143 |
+
device = duration.device
|
144 |
+
|
145 |
+
b, _, t_y, t_x = mask.shape
|
146 |
+
cum_duration = torch.cumsum(duration, -1)
|
147 |
+
|
148 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
149 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
150 |
+
path = path.view(b, t_x, t_y)
|
151 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
152 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
153 |
+
return path
|
154 |
+
|
155 |
+
|
156 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
157 |
+
if isinstance(parameters, torch.Tensor):
|
158 |
+
parameters = [parameters]
|
159 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
160 |
+
norm_type = float(norm_type)
|
161 |
+
if clip_value is not None:
|
162 |
+
clip_value = float(clip_value)
|
163 |
+
|
164 |
+
total_norm = 0
|
165 |
+
for p in parameters:
|
166 |
+
param_norm = p.grad.data.norm(norm_type)
|
167 |
+
total_norm += param_norm.item() ** norm_type
|
168 |
+
if clip_value is not None:
|
169 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
170 |
+
total_norm = total_norm ** (1. / norm_type)
|
171 |
+
return total_norm
|
configs/configs_freevc-24.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 10000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 64,
|
11 |
+
"fp16_run": false,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8640,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0,
|
18 |
+
"use_sr": true,
|
19 |
+
"max_speclen": 128,
|
20 |
+
"port": "8008"
|
21 |
+
},
|
22 |
+
"data": {
|
23 |
+
"training_files":"filelists/train.txt",
|
24 |
+
"validation_files":"filelists/val.txt",
|
25 |
+
"max_wav_value": 32768.0,
|
26 |
+
"sampling_rate": 16000,
|
27 |
+
"filter_length": 1280,
|
28 |
+
"hop_length": 320,
|
29 |
+
"win_length": 1280,
|
30 |
+
"n_mel_channels": 80,
|
31 |
+
"mel_fmin": 0.0,
|
32 |
+
"mel_fmax": null
|
33 |
+
},
|
34 |
+
"model": {
|
35 |
+
"inter_channels": 192,
|
36 |
+
"hidden_channels": 192,
|
37 |
+
"filter_channels": 768,
|
38 |
+
"n_heads": 2,
|
39 |
+
"n_layers": 6,
|
40 |
+
"kernel_size": 3,
|
41 |
+
"p_dropout": 0.1,
|
42 |
+
"resblock": "1",
|
43 |
+
"resblock_kernel_sizes": [3,7,11],
|
44 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
45 |
+
"upsample_rates": [10,6,4,2],
|
46 |
+
"upsample_initial_channel": 512,
|
47 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
48 |
+
"n_layers_q": 3,
|
49 |
+
"use_spectral_norm": false,
|
50 |
+
"gin_channels": 256,
|
51 |
+
"ssl_dim": 1024,
|
52 |
+
"use_spk": true
|
53 |
+
}
|
54 |
+
}
|
configs/configs_freevc-s.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 10000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 64,
|
11 |
+
"fp16_run": false,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8960,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0,
|
18 |
+
"use_sr": true,
|
19 |
+
"max_speclen": 128,
|
20 |
+
"port": "8001"
|
21 |
+
},
|
22 |
+
"data": {
|
23 |
+
"training_files":"filelists/train.txt",
|
24 |
+
"validation_files":"filelists/val.txt",
|
25 |
+
"max_wav_value": 32768.0,
|
26 |
+
"sampling_rate": 16000,
|
27 |
+
"filter_length": 1280,
|
28 |
+
"hop_length": 320,
|
29 |
+
"win_length": 1280,
|
30 |
+
"n_mel_channels": 80,
|
31 |
+
"mel_fmin": 0.0,
|
32 |
+
"mel_fmax": null
|
33 |
+
},
|
34 |
+
"model": {
|
35 |
+
"inter_channels": 192,
|
36 |
+
"hidden_channels": 192,
|
37 |
+
"filter_channels": 768,
|
38 |
+
"n_heads": 2,
|
39 |
+
"n_layers": 6,
|
40 |
+
"kernel_size": 3,
|
41 |
+
"p_dropout": 0.1,
|
42 |
+
"resblock": "1",
|
43 |
+
"resblock_kernel_sizes": [3,7,11],
|
44 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
45 |
+
"upsample_rates": [10,8,2,2],
|
46 |
+
"upsample_initial_channel": 512,
|
47 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
48 |
+
"n_layers_q": 3,
|
49 |
+
"use_spectral_norm": false,
|
50 |
+
"gin_channels": 256,
|
51 |
+
"ssl_dim": 1024,
|
52 |
+
"use_spk": false
|
53 |
+
}
|
54 |
+
}
|
configs/configs_freevc.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 10000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 64,
|
11 |
+
"fp16_run": false,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8960,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0,
|
18 |
+
"use_sr": true,
|
19 |
+
"max_speclen": 128,
|
20 |
+
"port": "8001"
|
21 |
+
},
|
22 |
+
"data": {
|
23 |
+
"training_files":"filelists/train.txt",
|
24 |
+
"validation_files":"filelists/val.txt",
|
25 |
+
"max_wav_value": 32768.0,
|
26 |
+
"sampling_rate": 16000,
|
27 |
+
"filter_length": 1280,
|
28 |
+
"hop_length": 320,
|
29 |
+
"win_length": 1280,
|
30 |
+
"n_mel_channels": 80,
|
31 |
+
"mel_fmin": 0.0,
|
32 |
+
"mel_fmax": null
|
33 |
+
},
|
34 |
+
"model": {
|
35 |
+
"inter_channels": 192,
|
36 |
+
"hidden_channels": 192,
|
37 |
+
"filter_channels": 768,
|
38 |
+
"n_heads": 2,
|
39 |
+
"n_layers": 6,
|
40 |
+
"kernel_size": 3,
|
41 |
+
"p_dropout": 0.1,
|
42 |
+
"resblock": "1",
|
43 |
+
"resblock_kernel_sizes": [3,7,11],
|
44 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
45 |
+
"upsample_rates": [10,8,2,2],
|
46 |
+
"upsample_initial_channel": 512,
|
47 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
48 |
+
"n_layers_q": 3,
|
49 |
+
"use_spectral_norm": false,
|
50 |
+
"gin_channels": 256,
|
51 |
+
"ssl_dim": 1024,
|
52 |
+
"use_spk": true
|
53 |
+
}
|
54 |
+
}
|
mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from commons import init_weights, get_padding
|
13 |
+
|
14 |
+
|
15 |
+
class ResidualCouplingBlock(nn.Module):
|
16 |
+
def __init__(self,
|
17 |
+
channels,
|
18 |
+
hidden_channels,
|
19 |
+
kernel_size,
|
20 |
+
dilation_rate,
|
21 |
+
n_layers,
|
22 |
+
n_flows=4,
|
23 |
+
gin_channels=0):
|
24 |
+
super().__init__()
|
25 |
+
self.channels = channels
|
26 |
+
self.hidden_channels = hidden_channels
|
27 |
+
self.kernel_size = kernel_size
|
28 |
+
self.dilation_rate = dilation_rate
|
29 |
+
self.n_layers = n_layers
|
30 |
+
self.n_flows = n_flows
|
31 |
+
self.gin_channels = gin_channels
|
32 |
+
|
33 |
+
self.flows = nn.ModuleList()
|
34 |
+
for i in range(n_flows):
|
35 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
36 |
+
self.flows.append(modules.Flip())
|
37 |
+
|
38 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
39 |
+
if not reverse:
|
40 |
+
for flow in self.flows:
|
41 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
42 |
+
else:
|
43 |
+
for flow in reversed(self.flows):
|
44 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Encoder(nn.Module):
|
49 |
+
def __init__(self,
|
50 |
+
in_channels,
|
51 |
+
out_channels,
|
52 |
+
hidden_channels,
|
53 |
+
kernel_size,
|
54 |
+
dilation_rate,
|
55 |
+
n_layers,
|
56 |
+
gin_channels=0):
|
57 |
+
super().__init__()
|
58 |
+
self.in_channels = in_channels
|
59 |
+
self.out_channels = out_channels
|
60 |
+
self.hidden_channels = hidden_channels
|
61 |
+
self.kernel_size = kernel_size
|
62 |
+
self.dilation_rate = dilation_rate
|
63 |
+
self.n_layers = n_layers
|
64 |
+
self.gin_channels = gin_channels
|
65 |
+
|
66 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
67 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
68 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
69 |
+
|
70 |
+
def forward(self, x, x_lengths, g=None):
|
71 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
72 |
+
x = self.pre(x) * x_mask
|
73 |
+
x = self.enc(x, x_mask, g=g)
|
74 |
+
stats = self.proj(x) * x_mask
|
75 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
76 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
77 |
+
return z, m, logs, x_mask
|
78 |
+
|
79 |
+
|
80 |
+
class Generator(torch.nn.Module):
|
81 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
82 |
+
super(Generator, self).__init__()
|
83 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
84 |
+
self.num_upsamples = len(upsample_rates)
|
85 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
86 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
87 |
+
|
88 |
+
self.ups = nn.ModuleList()
|
89 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
90 |
+
self.ups.append(weight_norm(
|
91 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
92 |
+
k, u, padding=(k-u)//2)))
|
93 |
+
|
94 |
+
self.resblocks = nn.ModuleList()
|
95 |
+
for i in range(len(self.ups)):
|
96 |
+
ch = upsample_initial_channel//(2**(i+1))
|
97 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
98 |
+
self.resblocks.append(resblock(ch, k, d))
|
99 |
+
|
100 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
101 |
+
self.ups.apply(init_weights)
|
102 |
+
|
103 |
+
if gin_channels != 0:
|
104 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
105 |
+
|
106 |
+
def forward(self, x, g=None):
|
107 |
+
x = self.conv_pre(x)
|
108 |
+
if g is not None:
|
109 |
+
x = x + self.cond(g)
|
110 |
+
|
111 |
+
for i in range(self.num_upsamples):
|
112 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
113 |
+
x = self.ups[i](x)
|
114 |
+
xs = None
|
115 |
+
for j in range(self.num_kernels):
|
116 |
+
if xs is None:
|
117 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
118 |
+
else:
|
119 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
120 |
+
x = xs / self.num_kernels
|
121 |
+
x = F.leaky_relu(x)
|
122 |
+
x = self.conv_post(x)
|
123 |
+
x = torch.tanh(x)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
def remove_weight_norm(self):
|
128 |
+
print('Removing weight norm...')
|
129 |
+
for l in self.ups:
|
130 |
+
remove_weight_norm(l)
|
131 |
+
for l in self.resblocks:
|
132 |
+
l.remove_weight_norm()
|
133 |
+
|
134 |
+
|
135 |
+
class DiscriminatorP(torch.nn.Module):
|
136 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
137 |
+
super(DiscriminatorP, self).__init__()
|
138 |
+
self.period = period
|
139 |
+
self.use_spectral_norm = use_spectral_norm
|
140 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
141 |
+
self.convs = nn.ModuleList([
|
142 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
143 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
144 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
145 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
146 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
147 |
+
])
|
148 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
149 |
+
|
150 |
+
def forward(self, x):
|
151 |
+
fmap = []
|
152 |
+
|
153 |
+
# 1d to 2d
|
154 |
+
b, c, t = x.shape
|
155 |
+
if t % self.period != 0: # pad first
|
156 |
+
n_pad = self.period - (t % self.period)
|
157 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
158 |
+
t = t + n_pad
|
159 |
+
x = x.view(b, c, t // self.period, self.period)
|
160 |
+
|
161 |
+
for l in self.convs:
|
162 |
+
x = l(x)
|
163 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
164 |
+
fmap.append(x)
|
165 |
+
x = self.conv_post(x)
|
166 |
+
fmap.append(x)
|
167 |
+
x = torch.flatten(x, 1, -1)
|
168 |
+
|
169 |
+
return x, fmap
|
170 |
+
|
171 |
+
|
172 |
+
class DiscriminatorS(torch.nn.Module):
|
173 |
+
def __init__(self, use_spectral_norm=False):
|
174 |
+
super(DiscriminatorS, self).__init__()
|
175 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
176 |
+
self.convs = nn.ModuleList([
|
177 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
178 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
179 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
180 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
181 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
182 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
183 |
+
])
|
184 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
fmap = []
|
188 |
+
|
189 |
+
for l in self.convs:
|
190 |
+
x = l(x)
|
191 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
192 |
+
fmap.append(x)
|
193 |
+
x = self.conv_post(x)
|
194 |
+
fmap.append(x)
|
195 |
+
x = torch.flatten(x, 1, -1)
|
196 |
+
|
197 |
+
return x, fmap
|
198 |
+
|
199 |
+
|
200 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
201 |
+
def __init__(self, use_spectral_norm=False):
|
202 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
203 |
+
periods = [2,3,5,7,11]
|
204 |
+
|
205 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
206 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
207 |
+
self.discriminators = nn.ModuleList(discs)
|
208 |
+
|
209 |
+
def forward(self, y, y_hat):
|
210 |
+
y_d_rs = []
|
211 |
+
y_d_gs = []
|
212 |
+
fmap_rs = []
|
213 |
+
fmap_gs = []
|
214 |
+
for i, d in enumerate(self.discriminators):
|
215 |
+
y_d_r, fmap_r = d(y)
|
216 |
+
y_d_g, fmap_g = d(y_hat)
|
217 |
+
y_d_rs.append(y_d_r)
|
218 |
+
y_d_gs.append(y_d_g)
|
219 |
+
fmap_rs.append(fmap_r)
|
220 |
+
fmap_gs.append(fmap_g)
|
221 |
+
|
222 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
223 |
+
|
224 |
+
|
225 |
+
class SpeakerEncoder(torch.nn.Module):
|
226 |
+
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
227 |
+
super(SpeakerEncoder, self).__init__()
|
228 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
229 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
230 |
+
self.relu = nn.ReLU()
|
231 |
+
|
232 |
+
def forward(self, mels):
|
233 |
+
self.lstm.flatten_parameters()
|
234 |
+
_, (hidden, _) = self.lstm(mels)
|
235 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
236 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
237 |
+
|
238 |
+
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
239 |
+
mel_slices = []
|
240 |
+
for i in range(0, total_frames-partial_frames, partial_hop):
|
241 |
+
mel_range = torch.arange(i, i+partial_frames)
|
242 |
+
mel_slices.append(mel_range)
|
243 |
+
|
244 |
+
return mel_slices
|
245 |
+
|
246 |
+
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
247 |
+
mel_len = mel.size(1)
|
248 |
+
last_mel = mel[:,-partial_frames:]
|
249 |
+
|
250 |
+
if mel_len > partial_frames:
|
251 |
+
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
252 |
+
mels = list(mel[:,s] for s in mel_slices)
|
253 |
+
mels.append(last_mel)
|
254 |
+
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
255 |
+
|
256 |
+
with torch.no_grad():
|
257 |
+
partial_embeds = self(mels)
|
258 |
+
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
259 |
+
#embed = embed / torch.linalg.norm(embed, 2)
|
260 |
+
else:
|
261 |
+
with torch.no_grad():
|
262 |
+
embed = self(last_mel)
|
263 |
+
|
264 |
+
return embed
|
265 |
+
|
266 |
+
|
267 |
+
class SynthesizerTrn(nn.Module):
|
268 |
+
"""
|
269 |
+
Synthesizer for Training
|
270 |
+
"""
|
271 |
+
|
272 |
+
def __init__(self,
|
273 |
+
spec_channels,
|
274 |
+
segment_size,
|
275 |
+
inter_channels,
|
276 |
+
hidden_channels,
|
277 |
+
filter_channels,
|
278 |
+
n_heads,
|
279 |
+
n_layers,
|
280 |
+
kernel_size,
|
281 |
+
p_dropout,
|
282 |
+
resblock,
|
283 |
+
resblock_kernel_sizes,
|
284 |
+
resblock_dilation_sizes,
|
285 |
+
upsample_rates,
|
286 |
+
upsample_initial_channel,
|
287 |
+
upsample_kernel_sizes,
|
288 |
+
gin_channels,
|
289 |
+
ssl_dim,
|
290 |
+
use_spk,
|
291 |
+
**kwargs):
|
292 |
+
|
293 |
+
super().__init__()
|
294 |
+
self.spec_channels = spec_channels
|
295 |
+
self.inter_channels = inter_channels
|
296 |
+
self.hidden_channels = hidden_channels
|
297 |
+
self.filter_channels = filter_channels
|
298 |
+
self.n_heads = n_heads
|
299 |
+
self.n_layers = n_layers
|
300 |
+
self.kernel_size = kernel_size
|
301 |
+
self.p_dropout = p_dropout
|
302 |
+
self.resblock = resblock
|
303 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
304 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
305 |
+
self.upsample_rates = upsample_rates
|
306 |
+
self.upsample_initial_channel = upsample_initial_channel
|
307 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
308 |
+
self.segment_size = segment_size
|
309 |
+
self.gin_channels = gin_channels
|
310 |
+
self.ssl_dim = ssl_dim
|
311 |
+
self.use_spk = use_spk
|
312 |
+
|
313 |
+
self.enc_p = Encoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16)
|
314 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
315 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
316 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
317 |
+
|
318 |
+
if not self.use_spk:
|
319 |
+
self.enc_spk = SpeakerEncoder(model_hidden_size=gin_channels, model_embedding_size=gin_channels)
|
320 |
+
|
321 |
+
def forward(self, c, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
|
322 |
+
if c_lengths == None:
|
323 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
324 |
+
if spec_lengths == None:
|
325 |
+
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
|
326 |
+
|
327 |
+
if not self.use_spk:
|
328 |
+
g = self.enc_spk(mel.transpose(1,2))
|
329 |
+
g = g.unsqueeze(-1)
|
330 |
+
|
331 |
+
_, m_p, logs_p, _ = self.enc_p(c, c_lengths)
|
332 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
333 |
+
z_p = self.flow(z, spec_mask, g=g)
|
334 |
+
|
335 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
|
336 |
+
o = self.dec(z_slice, g=g)
|
337 |
+
|
338 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
339 |
+
|
340 |
+
def infer(self, c, g=None, mel=None, c_lengths=None):
|
341 |
+
if c_lengths == None:
|
342 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
343 |
+
if not self.use_spk:
|
344 |
+
g = self.enc_spk.embed_utterance(mel.transpose(1,2))
|
345 |
+
g = g.unsqueeze(-1)
|
346 |
+
|
347 |
+
z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
|
348 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
349 |
+
o = self.dec(z * c_mask, g=g)
|
350 |
+
|
351 |
+
return o
|
modules.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
48 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
49 |
+
self.relu_drop = nn.Sequential(
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers-1):
|
53 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
54 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
55 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
56 |
+
self.proj.weight.data.zero_()
|
57 |
+
self.proj.bias.data.zero_()
|
58 |
+
|
59 |
+
def forward(self, x, x_mask):
|
60 |
+
x_org = x
|
61 |
+
for i in range(self.n_layers):
|
62 |
+
x = self.conv_layers[i](x * x_mask)
|
63 |
+
x = self.norm_layers[i](x)
|
64 |
+
x = self.relu_drop(x)
|
65 |
+
x = x_org + self.proj(x)
|
66 |
+
return x * x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class DDSConv(nn.Module):
|
70 |
+
"""
|
71 |
+
Dialted and Depth-Separable Convolution
|
72 |
+
"""
|
73 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
74 |
+
super().__init__()
|
75 |
+
self.channels = channels
|
76 |
+
self.kernel_size = kernel_size
|
77 |
+
self.n_layers = n_layers
|
78 |
+
self.p_dropout = p_dropout
|
79 |
+
|
80 |
+
self.drop = nn.Dropout(p_dropout)
|
81 |
+
self.convs_sep = nn.ModuleList()
|
82 |
+
self.convs_1x1 = nn.ModuleList()
|
83 |
+
self.norms_1 = nn.ModuleList()
|
84 |
+
self.norms_2 = nn.ModuleList()
|
85 |
+
for i in range(n_layers):
|
86 |
+
dilation = kernel_size ** i
|
87 |
+
padding = (kernel_size * dilation - dilation) // 2
|
88 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
89 |
+
groups=channels, dilation=dilation, padding=padding
|
90 |
+
))
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels =hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
133 |
+
dilation=dilation, padding=padding)
|
134 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
135 |
+
self.in_layers.append(in_layer)
|
136 |
+
|
137 |
+
# last one is not necessary
|
138 |
+
if i < n_layers - 1:
|
139 |
+
res_skip_channels = 2 * hidden_channels
|
140 |
+
else:
|
141 |
+
res_skip_channels = hidden_channels
|
142 |
+
|
143 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
144 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
145 |
+
self.res_skip_layers.append(res_skip_layer)
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
148 |
+
output = torch.zeros_like(x)
|
149 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
150 |
+
|
151 |
+
if g is not None:
|
152 |
+
g = self.cond_layer(g)
|
153 |
+
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
x_in = self.in_layers[i](x)
|
156 |
+
if g is not None:
|
157 |
+
cond_offset = i * 2 * self.hidden_channels
|
158 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
159 |
+
else:
|
160 |
+
g_l = torch.zeros_like(x_in)
|
161 |
+
|
162 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
163 |
+
x_in,
|
164 |
+
g_l,
|
165 |
+
n_channels_tensor)
|
166 |
+
acts = self.drop(acts)
|
167 |
+
|
168 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
169 |
+
if i < self.n_layers - 1:
|
170 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
171 |
+
x = (x + res_acts) * x_mask
|
172 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
173 |
+
else:
|
174 |
+
output = output + res_skip_acts
|
175 |
+
return output * x_mask
|
176 |
+
|
177 |
+
def remove_weight_norm(self):
|
178 |
+
if self.gin_channels != 0:
|
179 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
180 |
+
for l in self.in_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
for l in self.res_skip_layers:
|
183 |
+
torch.nn.utils.remove_weight_norm(l)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock1(torch.nn.Module):
|
187 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
188 |
+
super(ResBlock1, self).__init__()
|
189 |
+
self.convs1 = nn.ModuleList([
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
191 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
193 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
194 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
195 |
+
padding=get_padding(kernel_size, dilation[2])))
|
196 |
+
])
|
197 |
+
self.convs1.apply(init_weights)
|
198 |
+
|
199 |
+
self.convs2 = nn.ModuleList([
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1))),
|
204 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
205 |
+
padding=get_padding(kernel_size, 1)))
|
206 |
+
])
|
207 |
+
self.convs2.apply(init_weights)
|
208 |
+
|
209 |
+
def forward(self, x, x_mask=None):
|
210 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
211 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
212 |
+
if x_mask is not None:
|
213 |
+
xt = xt * x_mask
|
214 |
+
xt = c1(xt)
|
215 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
216 |
+
if x_mask is not None:
|
217 |
+
xt = xt * x_mask
|
218 |
+
xt = c2(xt)
|
219 |
+
x = xt + x
|
220 |
+
if x_mask is not None:
|
221 |
+
x = x * x_mask
|
222 |
+
return x
|
223 |
+
|
224 |
+
def remove_weight_norm(self):
|
225 |
+
for l in self.convs1:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
for l in self.convs2:
|
228 |
+
remove_weight_norm(l)
|
229 |
+
|
230 |
+
|
231 |
+
class ResBlock2(torch.nn.Module):
|
232 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
233 |
+
super(ResBlock2, self).__init__()
|
234 |
+
self.convs = nn.ModuleList([
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
237 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
238 |
+
padding=get_padding(kernel_size, dilation[1])))
|
239 |
+
])
|
240 |
+
self.convs.apply(init_weights)
|
241 |
+
|
242 |
+
def forward(self, x, x_mask=None):
|
243 |
+
for c in self.convs:
|
244 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
if x_mask is not None:
|
246 |
+
xt = xt * x_mask
|
247 |
+
xt = c(xt)
|
248 |
+
x = xt + x
|
249 |
+
if x_mask is not None:
|
250 |
+
x = x * x_mask
|
251 |
+
return x
|
252 |
+
|
253 |
+
def remove_weight_norm(self):
|
254 |
+
for l in self.convs:
|
255 |
+
remove_weight_norm(l)
|
256 |
+
|
257 |
+
|
258 |
+
class Log(nn.Module):
|
259 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
260 |
+
if not reverse:
|
261 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
262 |
+
logdet = torch.sum(-y, [1, 2])
|
263 |
+
return y, logdet
|
264 |
+
else:
|
265 |
+
x = torch.exp(x) * x_mask
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
class Flip(nn.Module):
|
270 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
271 |
+
x = torch.flip(x, [1])
|
272 |
+
if not reverse:
|
273 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
274 |
+
return x, logdet
|
275 |
+
else:
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class ElementwiseAffine(nn.Module):
|
280 |
+
def __init__(self, channels):
|
281 |
+
super().__init__()
|
282 |
+
self.channels = channels
|
283 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
284 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
|
286 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
287 |
+
if not reverse:
|
288 |
+
y = self.m + torch.exp(self.logs) * x
|
289 |
+
y = y * x_mask
|
290 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
291 |
+
return y, logdet
|
292 |
+
else:
|
293 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class ResidualCouplingLayer(nn.Module):
|
298 |
+
def __init__(self,
|
299 |
+
channels,
|
300 |
+
hidden_channels,
|
301 |
+
kernel_size,
|
302 |
+
dilation_rate,
|
303 |
+
n_layers,
|
304 |
+
p_dropout=0,
|
305 |
+
gin_channels=0,
|
306 |
+
mean_only=False):
|
307 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
308 |
+
super().__init__()
|
309 |
+
self.channels = channels
|
310 |
+
self.hidden_channels = hidden_channels
|
311 |
+
self.kernel_size = kernel_size
|
312 |
+
self.dilation_rate = dilation_rate
|
313 |
+
self.n_layers = n_layers
|
314 |
+
self.half_channels = channels // 2
|
315 |
+
self.mean_only = mean_only
|
316 |
+
|
317 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
318 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
319 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
320 |
+
self.post.weight.data.zero_()
|
321 |
+
self.post.bias.data.zero_()
|
322 |
+
|
323 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
324 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
325 |
+
h = self.pre(x0) * x_mask
|
326 |
+
h = self.enc(h, x_mask, g=g)
|
327 |
+
stats = self.post(h) * x_mask
|
328 |
+
if not self.mean_only:
|
329 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
330 |
+
else:
|
331 |
+
m = stats
|
332 |
+
logs = torch.zeros_like(m)
|
333 |
+
|
334 |
+
if not reverse:
|
335 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
336 |
+
x = torch.cat([x0, x1], 1)
|
337 |
+
logdet = torch.sum(logs, [1,2])
|
338 |
+
return x, logdet
|
339 |
+
else:
|
340 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
341 |
+
x = torch.cat([x0, x1], 1)
|
342 |
+
return x
|
p225_001.wav
ADDED
Binary file (52.1 kB). View file
|
|
p226_002.wav
ADDED
Binary file (138 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair
|
2 |
+
httpx==0.24.1
|
3 |
+
numpy
|
4 |
+
scipy
|
5 |
+
torch
|
6 |
+
transformers
|
7 |
+
librosa
|
8 |
+
webrtcvad==2.0.10
|
speaker_encoder/ckpt/pretrained_bak_5805000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc7ff82ef75becd495aab2ede3a8220da393a717f178ae9534df355a6173bbca
|
3 |
+
size 17090379
|
speaker_encoder/data_objects/speaker_encoder_data_objects___init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset
|
2 |
+
from speaker_encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataLoader
|
speaker_encoder/data_objects/speaker_encoder_data_objects_random_cycler.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
class RandomCycler:
|
4 |
+
"""
|
5 |
+
Creates an internal copy of a sequence and allows access to its items in a constrained random
|
6 |
+
order. For a source sequence of n items and one or several consecutive queries of a total
|
7 |
+
of m items, the following guarantees hold (one implies the other):
|
8 |
+
- Each item will be returned between m // n and ((m - 1) // n) + 1 times.
|
9 |
+
- Between two appearances of the same item, there may be at most 2 * (n - 1) other items.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self, source):
|
13 |
+
if len(source) == 0:
|
14 |
+
raise Exception("Can't create RandomCycler from an empty collection")
|
15 |
+
self.all_items = list(source)
|
16 |
+
self.next_items = []
|
17 |
+
|
18 |
+
def sample(self, count: int):
|
19 |
+
shuffle = lambda l: random.sample(l, len(l))
|
20 |
+
|
21 |
+
out = []
|
22 |
+
while count > 0:
|
23 |
+
if count >= len(self.all_items):
|
24 |
+
out.extend(shuffle(list(self.all_items)))
|
25 |
+
count -= len(self.all_items)
|
26 |
+
continue
|
27 |
+
n = min(count, len(self.next_items))
|
28 |
+
out.extend(self.next_items[:n])
|
29 |
+
count -= n
|
30 |
+
self.next_items = self.next_items[n:]
|
31 |
+
if len(self.next_items) == 0:
|
32 |
+
self.next_items = shuffle(list(self.all_items))
|
33 |
+
return out
|
34 |
+
|
35 |
+
def __next__(self):
|
36 |
+
return self.sample(1)[0]
|
37 |
+
|
speaker_encoder/data_objects/speaker_encoder_data_objects_speaker.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.data_objects.random_cycler import RandomCycler
|
2 |
+
from speaker_encoder.data_objects.utterance import Utterance
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
# Contains the set of utterances of a single speaker
|
6 |
+
class Speaker:
|
7 |
+
def __init__(self, root: Path):
|
8 |
+
self.root = root
|
9 |
+
self.name = root.name
|
10 |
+
self.utterances = None
|
11 |
+
self.utterance_cycler = None
|
12 |
+
|
13 |
+
def _load_utterances(self):
|
14 |
+
with self.root.joinpath("_sources.txt").open("r") as sources_file:
|
15 |
+
sources = [l.split(",") for l in sources_file]
|
16 |
+
sources = {frames_fname: wave_fpath for frames_fname, wave_fpath in sources}
|
17 |
+
self.utterances = [Utterance(self.root.joinpath(f), w) for f, w in sources.items()]
|
18 |
+
self.utterance_cycler = RandomCycler(self.utterances)
|
19 |
+
|
20 |
+
def random_partial(self, count, n_frames):
|
21 |
+
"""
|
22 |
+
Samples a batch of <count> unique partial utterances from the disk in a way that all
|
23 |
+
utterances come up at least once every two cycles and in a random order every time.
|
24 |
+
|
25 |
+
:param count: The number of partial utterances to sample from the set of utterances from
|
26 |
+
that speaker. Utterances are guaranteed not to be repeated if <count> is not larger than
|
27 |
+
the number of utterances available.
|
28 |
+
:param n_frames: The number of frames in the partial utterance.
|
29 |
+
:return: A list of tuples (utterance, frames, range) where utterance is an Utterance,
|
30 |
+
frames are the frames of the partial utterances and range is the range of the partial
|
31 |
+
utterance with regard to the complete utterance.
|
32 |
+
"""
|
33 |
+
if self.utterances is None:
|
34 |
+
self._load_utterances()
|
35 |
+
|
36 |
+
utterances = self.utterance_cycler.sample(count)
|
37 |
+
|
38 |
+
a = [(u,) + u.random_partial(n_frames) for u in utterances]
|
39 |
+
|
40 |
+
return a
|
speaker_encoder/data_objects/speaker_encoder_data_objects_speaker_batch.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import List
|
3 |
+
from speaker_encoder.data_objects.speaker import Speaker
|
4 |
+
|
5 |
+
class SpeakerBatch:
|
6 |
+
def __init__(self, speakers: List[Speaker], utterances_per_speaker: int, n_frames: int):
|
7 |
+
self.speakers = speakers
|
8 |
+
self.partials = {s: s.random_partial(utterances_per_speaker, n_frames) for s in speakers}
|
9 |
+
|
10 |
+
# Array of shape (n_speakers * n_utterances, n_frames, mel_n), e.g. for 3 speakers with
|
11 |
+
# 4 utterances each of 160 frames of 40 mel coefficients: (12, 160, 40)
|
12 |
+
self.data = np.array([frames for s in speakers for _, frames, _ in self.partials[s]])
|
speaker_encoder/data_objects/speaker_encoder_data_objects_speaker_verification_dataset.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.data_objects.random_cycler import RandomCycler
|
2 |
+
from speaker_encoder.data_objects.speaker_batch import SpeakerBatch
|
3 |
+
from speaker_encoder.data_objects.speaker import Speaker
|
4 |
+
from speaker_encoder.params_data import partials_n_frames
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
# TODO: improve with a pool of speakers for data efficiency
|
9 |
+
|
10 |
+
class SpeakerVerificationDataset(Dataset):
|
11 |
+
def __init__(self, datasets_root: Path):
|
12 |
+
self.root = datasets_root
|
13 |
+
speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()]
|
14 |
+
if len(speaker_dirs) == 0:
|
15 |
+
raise Exception("No speakers found. Make sure you are pointing to the directory "
|
16 |
+
"containing all preprocessed speaker directories.")
|
17 |
+
self.speakers = [Speaker(speaker_dir) for speaker_dir in speaker_dirs]
|
18 |
+
self.speaker_cycler = RandomCycler(self.speakers)
|
19 |
+
|
20 |
+
def __len__(self):
|
21 |
+
return int(1e10)
|
22 |
+
|
23 |
+
def __getitem__(self, index):
|
24 |
+
return next(self.speaker_cycler)
|
25 |
+
|
26 |
+
def get_logs(self):
|
27 |
+
log_string = ""
|
28 |
+
for log_fpath in self.root.glob("*.txt"):
|
29 |
+
with log_fpath.open("r") as log_file:
|
30 |
+
log_string += "".join(log_file.readlines())
|
31 |
+
return log_string
|
32 |
+
|
33 |
+
|
34 |
+
class SpeakerVerificationDataLoader(DataLoader):
|
35 |
+
def __init__(self, dataset, speakers_per_batch, utterances_per_speaker, sampler=None,
|
36 |
+
batch_sampler=None, num_workers=0, pin_memory=False, timeout=0,
|
37 |
+
worker_init_fn=None):
|
38 |
+
self.utterances_per_speaker = utterances_per_speaker
|
39 |
+
|
40 |
+
super().__init__(
|
41 |
+
dataset=dataset,
|
42 |
+
batch_size=speakers_per_batch,
|
43 |
+
shuffle=False,
|
44 |
+
sampler=sampler,
|
45 |
+
batch_sampler=batch_sampler,
|
46 |
+
num_workers=num_workers,
|
47 |
+
collate_fn=self.collate,
|
48 |
+
pin_memory=pin_memory,
|
49 |
+
drop_last=False,
|
50 |
+
timeout=timeout,
|
51 |
+
worker_init_fn=worker_init_fn
|
52 |
+
)
|
53 |
+
|
54 |
+
def collate(self, speakers):
|
55 |
+
return SpeakerBatch(speakers, self.utterances_per_speaker, partials_n_frames)
|
56 |
+
|
speaker_encoder/data_objects/speaker_encoder_data_objects_utterance.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class Utterance:
|
5 |
+
def __init__(self, frames_fpath, wave_fpath):
|
6 |
+
self.frames_fpath = frames_fpath
|
7 |
+
self.wave_fpath = wave_fpath
|
8 |
+
|
9 |
+
def get_frames(self):
|
10 |
+
return np.load(self.frames_fpath)
|
11 |
+
|
12 |
+
def random_partial(self, n_frames):
|
13 |
+
"""
|
14 |
+
Crops the frames into a partial utterance of n_frames
|
15 |
+
|
16 |
+
:param n_frames: The number of frames of the partial utterance
|
17 |
+
:return: the partial utterance frames and a tuple indicating the start and end of the
|
18 |
+
partial utterance in the complete utterance.
|
19 |
+
"""
|
20 |
+
frames = self.get_frames()
|
21 |
+
if frames.shape[0] == n_frames:
|
22 |
+
start = 0
|
23 |
+
else:
|
24 |
+
start = np.random.randint(0, frames.shape[0] - n_frames)
|
25 |
+
end = start + n_frames
|
26 |
+
return frames[start:end], (start, end)
|
speaker_encoder/speaker_encoder___init__.py
ADDED
File without changes
|
speaker_encoder/speaker_encoder_audio.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from scipy.ndimage.morphology import binary_dilation
|
2 |
+
from speaker_encoder.params_data import *
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Optional, Union
|
5 |
+
import numpy as np
|
6 |
+
import webrtcvad
|
7 |
+
import librosa
|
8 |
+
import struct
|
9 |
+
|
10 |
+
int16_max = (2 ** 15) - 1
|
11 |
+
|
12 |
+
|
13 |
+
def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray],
|
14 |
+
source_sr: Optional[int] = None):
|
15 |
+
"""
|
16 |
+
Applies the preprocessing operations used in training the Speaker Encoder to a waveform
|
17 |
+
either on disk or in memory. The waveform will be resampled to match the data hyperparameters.
|
18 |
+
|
19 |
+
:param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not
|
20 |
+
just .wav), either the waveform as a numpy array of floats.
|
21 |
+
:param source_sr: if passing an audio waveform, the sampling rate of the waveform before
|
22 |
+
preprocessing. After preprocessing, the waveform's sampling rate will match the data
|
23 |
+
hyperparameters. If passing a filepath, the sampling rate will be automatically detected and
|
24 |
+
this argument will be ignored.
|
25 |
+
"""
|
26 |
+
# Load the wav from disk if needed
|
27 |
+
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
|
28 |
+
wav, source_sr = librosa.load(fpath_or_wav, sr=None)
|
29 |
+
else:
|
30 |
+
wav = fpath_or_wav
|
31 |
+
|
32 |
+
# Resample the wav if needed
|
33 |
+
if source_sr is not None and source_sr != sampling_rate:
|
34 |
+
wav = librosa.resample(wav, source_sr, sampling_rate)
|
35 |
+
|
36 |
+
# Apply the preprocessing: normalize volume and shorten long silences
|
37 |
+
wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True)
|
38 |
+
wav = trim_long_silences(wav)
|
39 |
+
|
40 |
+
return wav
|
41 |
+
|
42 |
+
|
43 |
+
def wav_to_mel_spectrogram(wav):
|
44 |
+
"""
|
45 |
+
Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform.
|
46 |
+
Note: this not a log-mel spectrogram.
|
47 |
+
"""
|
48 |
+
frames = librosa.feature.melspectrogram(
|
49 |
+
y=wav,
|
50 |
+
sr=sampling_rate,
|
51 |
+
n_fft=int(sampling_rate * mel_window_length / 1000),
|
52 |
+
hop_length=int(sampling_rate * mel_window_step / 1000),
|
53 |
+
n_mels=mel_n_channels
|
54 |
+
)
|
55 |
+
return frames.astype(np.float32).T
|
56 |
+
|
57 |
+
|
58 |
+
def trim_long_silences(wav):
|
59 |
+
"""
|
60 |
+
Ensures that segments without voice in the waveform remain no longer than a
|
61 |
+
threshold determined by the VAD parameters in params.py.
|
62 |
+
|
63 |
+
:param wav: the raw waveform as a numpy array of floats
|
64 |
+
:return: the same waveform with silences trimmed away (length <= original wav length)
|
65 |
+
"""
|
66 |
+
# Compute the voice detection window size
|
67 |
+
samples_per_window = (vad_window_length * sampling_rate) // 1000
|
68 |
+
|
69 |
+
# Trim the end of the audio to have a multiple of the window size
|
70 |
+
wav = wav[:len(wav) - (len(wav) % samples_per_window)]
|
71 |
+
|
72 |
+
# Convert the float waveform to 16-bit mono PCM
|
73 |
+
pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
|
74 |
+
|
75 |
+
# Perform voice activation detection
|
76 |
+
voice_flags = []
|
77 |
+
vad = webrtcvad.Vad(mode=3)
|
78 |
+
for window_start in range(0, len(wav), samples_per_window):
|
79 |
+
window_end = window_start + samples_per_window
|
80 |
+
voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
|
81 |
+
sample_rate=sampling_rate))
|
82 |
+
voice_flags = np.array(voice_flags)
|
83 |
+
|
84 |
+
# Smooth the voice detection with a moving average
|
85 |
+
def moving_average(array, width):
|
86 |
+
array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
|
87 |
+
ret = np.cumsum(array_padded, dtype=float)
|
88 |
+
ret[width:] = ret[width:] - ret[:-width]
|
89 |
+
return ret[width - 1:] / width
|
90 |
+
|
91 |
+
audio_mask = moving_average(voice_flags, vad_moving_average_width)
|
92 |
+
audio_mask = np.round(audio_mask).astype(np.bool)
|
93 |
+
|
94 |
+
# Dilate the voiced regions
|
95 |
+
audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
|
96 |
+
audio_mask = np.repeat(audio_mask, samples_per_window)
|
97 |
+
|
98 |
+
return wav[audio_mask == True]
|
99 |
+
|
100 |
+
|
101 |
+
def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False):
|
102 |
+
if increase_only and decrease_only:
|
103 |
+
raise ValueError("Both increase only and decrease only are set")
|
104 |
+
dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2))
|
105 |
+
if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only):
|
106 |
+
return wav
|
107 |
+
return wav * (10 ** (dBFS_change / 20))
|
speaker_encoder/speaker_encoder_compute_embed.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder import inference as encoder
|
2 |
+
from multiprocessing.pool import Pool
|
3 |
+
from functools import partial
|
4 |
+
from pathlib import Path
|
5 |
+
# from utils import logmmse
|
6 |
+
# from tqdm import tqdm
|
7 |
+
# import numpy as np
|
8 |
+
# import librosa
|
9 |
+
|
10 |
+
|
11 |
+
def embed_utterance(fpaths, encoder_model_fpath):
|
12 |
+
if not encoder.is_loaded():
|
13 |
+
encoder.load_model(encoder_model_fpath)
|
14 |
+
|
15 |
+
# Compute the speaker embedding of the utterance
|
16 |
+
wav_fpath, embed_fpath = fpaths
|
17 |
+
wav = np.load(wav_fpath)
|
18 |
+
wav = encoder.preprocess_wav(wav)
|
19 |
+
embed = encoder.embed_utterance(wav)
|
20 |
+
np.save(embed_fpath, embed, allow_pickle=False)
|
21 |
+
|
22 |
+
|
23 |
+
def create_embeddings(outdir_root: Path, wav_dir: Path, encoder_model_fpath: Path, n_processes: int):
|
24 |
+
|
25 |
+
wav_dir = outdir_root.joinpath("audio")
|
26 |
+
metadata_fpath = synthesizer_root.joinpath("train.txt")
|
27 |
+
assert wav_dir.exists() and metadata_fpath.exists()
|
28 |
+
embed_dir = synthesizer_root.joinpath("embeds")
|
29 |
+
embed_dir.mkdir(exist_ok=True)
|
30 |
+
|
31 |
+
# Gather the input wave filepath and the target output embed filepath
|
32 |
+
with metadata_fpath.open("r") as metadata_file:
|
33 |
+
metadata = [line.split("|") for line in metadata_file]
|
34 |
+
fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata]
|
35 |
+
|
36 |
+
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
|
37 |
+
# Embed the utterances in separate threads
|
38 |
+
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
|
39 |
+
job = Pool(n_processes).imap(func, fpaths)
|
40 |
+
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
|
speaker_encoder/speaker_encoder_config.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librispeech_datasets = {
|
2 |
+
"train": {
|
3 |
+
"clean": ["LibriSpeech/train-clean-100", "LibriSpeech/train-clean-360"],
|
4 |
+
"other": ["LibriSpeech/train-other-500"]
|
5 |
+
},
|
6 |
+
"test": {
|
7 |
+
"clean": ["LibriSpeech/test-clean"],
|
8 |
+
"other": ["LibriSpeech/test-other"]
|
9 |
+
},
|
10 |
+
"dev": {
|
11 |
+
"clean": ["LibriSpeech/dev-clean"],
|
12 |
+
"other": ["LibriSpeech/dev-other"]
|
13 |
+
},
|
14 |
+
}
|
15 |
+
libritts_datasets = {
|
16 |
+
"train": {
|
17 |
+
"clean": ["LibriTTS/train-clean-100", "LibriTTS/train-clean-360"],
|
18 |
+
"other": ["LibriTTS/train-other-500"]
|
19 |
+
},
|
20 |
+
"test": {
|
21 |
+
"clean": ["LibriTTS/test-clean"],
|
22 |
+
"other": ["LibriTTS/test-other"]
|
23 |
+
},
|
24 |
+
"dev": {
|
25 |
+
"clean": ["LibriTTS/dev-clean"],
|
26 |
+
"other": ["LibriTTS/dev-other"]
|
27 |
+
},
|
28 |
+
}
|
29 |
+
voxceleb_datasets = {
|
30 |
+
"voxceleb1" : {
|
31 |
+
"train": ["VoxCeleb1/wav"],
|
32 |
+
"test": ["VoxCeleb1/test_wav"]
|
33 |
+
},
|
34 |
+
"voxceleb2" : {
|
35 |
+
"train": ["VoxCeleb2/dev/aac"],
|
36 |
+
"test": ["VoxCeleb2/test_wav"]
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
other_datasets = [
|
41 |
+
"LJSpeech-1.1",
|
42 |
+
"VCTK-Corpus/wav48",
|
43 |
+
]
|
44 |
+
|
45 |
+
anglophone_nationalites = ["australia", "canada", "ireland", "uk", "usa"]
|
speaker_encoder/speaker_encoder_hparams.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Mel-filterbank
|
2 |
+
mel_window_length = 25 # In milliseconds
|
3 |
+
mel_window_step = 10 # In milliseconds
|
4 |
+
mel_n_channels = 40
|
5 |
+
|
6 |
+
|
7 |
+
## Audio
|
8 |
+
sampling_rate = 16000
|
9 |
+
# Number of spectrogram frames in a partial utterance
|
10 |
+
partials_n_frames = 160 # 1600 ms
|
11 |
+
|
12 |
+
|
13 |
+
## Voice Activation Detection
|
14 |
+
# Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
|
15 |
+
# This sets the granularity of the VAD. Should not need to be changed.
|
16 |
+
vad_window_length = 30 # In milliseconds
|
17 |
+
# Number of frames to average together when performing the moving average smoothing.
|
18 |
+
# The larger this value, the larger the VAD variations must be to not get smoothed out.
|
19 |
+
vad_moving_average_width = 8
|
20 |
+
# Maximum number of consecutive silent frames a segment can have.
|
21 |
+
vad_max_silence_length = 6
|
22 |
+
|
23 |
+
|
24 |
+
## Audio volume normalization
|
25 |
+
audio_norm_target_dBFS = -30
|
26 |
+
|
27 |
+
|
28 |
+
## Model parameters
|
29 |
+
model_hidden_size = 256
|
30 |
+
model_embedding_size = 256
|
31 |
+
model_num_layers = 3
|
speaker_encoder/speaker_encoder_inference.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.params_data import *
|
2 |
+
from speaker_encoder.model import SpeakerEncoder
|
3 |
+
from speaker_encoder.audio import preprocess_wav # We want to expose this function from here
|
4 |
+
from matplotlib import cm
|
5 |
+
from speaker_encoder import audio
|
6 |
+
from pathlib import Path
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
_model = None # type: SpeakerEncoder
|
12 |
+
_device = None # type: torch.device
|
13 |
+
|
14 |
+
|
15 |
+
def load_model(weights_fpath: Path, device=None):
|
16 |
+
"""
|
17 |
+
Loads the model in memory. If this function is not explicitely called, it will be run on the
|
18 |
+
first call to embed_frames() with the default weights file.
|
19 |
+
|
20 |
+
:param weights_fpath: the path to saved model weights.
|
21 |
+
:param device: either a torch device or the name of a torch device (e.g. "cpu", "cuda"). The
|
22 |
+
model will be loaded and will run on this device. Outputs will however always be on the cpu.
|
23 |
+
If None, will default to your GPU if it"s available, otherwise your CPU.
|
24 |
+
"""
|
25 |
+
# TODO: I think the slow loading of the encoder might have something to do with the device it
|
26 |
+
# was saved on. Worth investigating.
|
27 |
+
global _model, _device
|
28 |
+
if device is None:
|
29 |
+
_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
elif isinstance(device, str):
|
31 |
+
_device = torch.device(device)
|
32 |
+
_model = SpeakerEncoder(_device, torch.device("cpu"))
|
33 |
+
checkpoint = torch.load(weights_fpath)
|
34 |
+
_model.load_state_dict(checkpoint["model_state"])
|
35 |
+
_model.eval()
|
36 |
+
print("Loaded encoder \"%s\" trained to step %d" % (weights_fpath.name, checkpoint["step"]))
|
37 |
+
|
38 |
+
|
39 |
+
def is_loaded():
|
40 |
+
return _model is not None
|
41 |
+
|
42 |
+
|
43 |
+
def embed_frames_batch(frames_batch):
|
44 |
+
"""
|
45 |
+
Computes embeddings for a batch of mel spectrogram.
|
46 |
+
|
47 |
+
:param frames_batch: a batch mel of spectrogram as a numpy array of float32 of shape
|
48 |
+
(batch_size, n_frames, n_channels)
|
49 |
+
:return: the embeddings as a numpy array of float32 of shape (batch_size, model_embedding_size)
|
50 |
+
"""
|
51 |
+
if _model is None:
|
52 |
+
raise Exception("Model was not loaded. Call load_model() before inference.")
|
53 |
+
|
54 |
+
frames = torch.from_numpy(frames_batch).to(_device)
|
55 |
+
embed = _model.forward(frames).detach().cpu().numpy()
|
56 |
+
return embed
|
57 |
+
|
58 |
+
|
59 |
+
def compute_partial_slices(n_samples, partial_utterance_n_frames=partials_n_frames,
|
60 |
+
min_pad_coverage=0.75, overlap=0.5):
|
61 |
+
"""
|
62 |
+
Computes where to split an utterance waveform and its corresponding mel spectrogram to obtain
|
63 |
+
partial utterances of <partial_utterance_n_frames> each. Both the waveform and the mel
|
64 |
+
spectrogram slices are returned, so as to make each partial utterance waveform correspond to
|
65 |
+
its spectrogram. This function assumes that the mel spectrogram parameters used are those
|
66 |
+
defined in params_data.py.
|
67 |
+
|
68 |
+
The returned ranges may be indexing further than the length of the waveform. It is
|
69 |
+
recommended that you pad the waveform with zeros up to wave_slices[-1].stop.
|
70 |
+
|
71 |
+
:param n_samples: the number of samples in the waveform
|
72 |
+
:param partial_utterance_n_frames: the number of mel spectrogram frames in each partial
|
73 |
+
utterance
|
74 |
+
:param min_pad_coverage: when reaching the last partial utterance, it may or may not have
|
75 |
+
enough frames. If at least <min_pad_coverage> of <partial_utterance_n_frames> are present,
|
76 |
+
then the last partial utterance will be considered, as if we padded the audio. Otherwise,
|
77 |
+
it will be discarded, as if we trimmed the audio. If there aren't enough frames for 1 partial
|
78 |
+
utterance, this parameter is ignored so that the function always returns at least 1 slice.
|
79 |
+
:param overlap: by how much the partial utterance should overlap. If set to 0, the partial
|
80 |
+
utterances are entirely disjoint.
|
81 |
+
:return: the waveform slices and mel spectrogram slices as lists of array slices. Index
|
82 |
+
respectively the waveform and the mel spectrogram with these slices to obtain the partial
|
83 |
+
utterances.
|
84 |
+
"""
|
85 |
+
assert 0 <= overlap < 1
|
86 |
+
assert 0 < min_pad_coverage <= 1
|
87 |
+
|
88 |
+
samples_per_frame = int((sampling_rate * mel_window_step / 1000))
|
89 |
+
n_frames = int(np.ceil((n_samples + 1) / samples_per_frame))
|
90 |
+
frame_step = max(int(np.round(partial_utterance_n_frames * (1 - overlap))), 1)
|
91 |
+
|
92 |
+
# Compute the slices
|
93 |
+
wav_slices, mel_slices = [], []
|
94 |
+
steps = max(1, n_frames - partial_utterance_n_frames + frame_step + 1)
|
95 |
+
for i in range(0, steps, frame_step):
|
96 |
+
mel_range = np.array([i, i + partial_utterance_n_frames])
|
97 |
+
wav_range = mel_range * samples_per_frame
|
98 |
+
mel_slices.append(slice(*mel_range))
|
99 |
+
wav_slices.append(slice(*wav_range))
|
100 |
+
|
101 |
+
# Evaluate whether extra padding is warranted or not
|
102 |
+
last_wav_range = wav_slices[-1]
|
103 |
+
coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start)
|
104 |
+
if coverage < min_pad_coverage and len(mel_slices) > 1:
|
105 |
+
mel_slices = mel_slices[:-1]
|
106 |
+
wav_slices = wav_slices[:-1]
|
107 |
+
|
108 |
+
return wav_slices, mel_slices
|
109 |
+
|
110 |
+
|
111 |
+
def embed_utterance(wav, using_partials=True, return_partials=False, **kwargs):
|
112 |
+
"""
|
113 |
+
Computes an embedding for a single utterance.
|
114 |
+
|
115 |
+
# TODO: handle multiple wavs to benefit from batching on GPU
|
116 |
+
:param wav: a preprocessed (see audio.py) utterance waveform as a numpy array of float32
|
117 |
+
:param using_partials: if True, then the utterance is split in partial utterances of
|
118 |
+
<partial_utterance_n_frames> frames and the utterance embedding is computed from their
|
119 |
+
normalized average. If False, the utterance is instead computed from feeding the entire
|
120 |
+
spectogram to the network.
|
121 |
+
:param return_partials: if True, the partial embeddings will also be returned along with the
|
122 |
+
wav slices that correspond to the partial embeddings.
|
123 |
+
:param kwargs: additional arguments to compute_partial_splits()
|
124 |
+
:return: the embedding as a numpy array of float32 of shape (model_embedding_size,). If
|
125 |
+
<return_partials> is True, the partial utterances as a numpy array of float32 of shape
|
126 |
+
(n_partials, model_embedding_size) and the wav partials as a list of slices will also be
|
127 |
+
returned. If <using_partials> is simultaneously set to False, both these values will be None
|
128 |
+
instead.
|
129 |
+
"""
|
130 |
+
# Process the entire utterance if not using partials
|
131 |
+
if not using_partials:
|
132 |
+
frames = audio.wav_to_mel_spectrogram(wav)
|
133 |
+
embed = embed_frames_batch(frames[None, ...])[0]
|
134 |
+
if return_partials:
|
135 |
+
return embed, None, None
|
136 |
+
return embed
|
137 |
+
|
138 |
+
# Compute where to split the utterance into partials and pad if necessary
|
139 |
+
wave_slices, mel_slices = compute_partial_slices(len(wav), **kwargs)
|
140 |
+
max_wave_length = wave_slices[-1].stop
|
141 |
+
if max_wave_length >= len(wav):
|
142 |
+
wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
|
143 |
+
|
144 |
+
# Split the utterance into partials
|
145 |
+
frames = audio.wav_to_mel_spectrogram(wav)
|
146 |
+
frames_batch = np.array([frames[s] for s in mel_slices])
|
147 |
+
partial_embeds = embed_frames_batch(frames_batch)
|
148 |
+
|
149 |
+
# Compute the utterance embedding from the partial embeddings
|
150 |
+
raw_embed = np.mean(partial_embeds, axis=0)
|
151 |
+
embed = raw_embed / np.linalg.norm(raw_embed, 2)
|
152 |
+
|
153 |
+
if return_partials:
|
154 |
+
return embed, partial_embeds, wave_slices
|
155 |
+
return embed
|
156 |
+
|
157 |
+
|
158 |
+
def embed_speaker(wavs, **kwargs):
|
159 |
+
raise NotImplemented()
|
160 |
+
|
161 |
+
|
162 |
+
def plot_embedding_as_heatmap(embed, ax=None, title="", shape=None, color_range=(0, 0.30)):
|
163 |
+
if ax is None:
|
164 |
+
ax = plt.gca()
|
165 |
+
|
166 |
+
if shape is None:
|
167 |
+
height = int(np.sqrt(len(embed)))
|
168 |
+
shape = (height, -1)
|
169 |
+
embed = embed.reshape(shape)
|
170 |
+
|
171 |
+
cmap = cm.get_cmap()
|
172 |
+
mappable = ax.imshow(embed, cmap=cmap)
|
173 |
+
cbar = plt.colorbar(mappable, ax=ax, fraction=0.046, pad=0.04)
|
174 |
+
cbar.set_clim(*color_range)
|
175 |
+
|
176 |
+
ax.set_xticks([]), ax.set_yticks([])
|
177 |
+
ax.set_title(title)
|
speaker_encoder/speaker_encoder_model.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.params_model import *
|
2 |
+
from speaker_encoder.params_data import *
|
3 |
+
from scipy.interpolate import interp1d
|
4 |
+
from sklearn.metrics import roc_curve
|
5 |
+
from torch.nn.utils import clip_grad_norm_
|
6 |
+
from scipy.optimize import brentq
|
7 |
+
from torch import nn
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
class SpeakerEncoder(nn.Module):
|
13 |
+
def __init__(self, device, loss_device):
|
14 |
+
super().__init__()
|
15 |
+
self.loss_device = loss_device
|
16 |
+
|
17 |
+
# Network defition
|
18 |
+
self.lstm = nn.LSTM(input_size=mel_n_channels, # 40
|
19 |
+
hidden_size=model_hidden_size, # 256
|
20 |
+
num_layers=model_num_layers, # 3
|
21 |
+
batch_first=True).to(device)
|
22 |
+
self.linear = nn.Linear(in_features=model_hidden_size,
|
23 |
+
out_features=model_embedding_size).to(device)
|
24 |
+
self.relu = torch.nn.ReLU().to(device)
|
25 |
+
|
26 |
+
# Cosine similarity scaling (with fixed initial parameter values)
|
27 |
+
self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device)
|
28 |
+
self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device)
|
29 |
+
|
30 |
+
# Loss
|
31 |
+
self.loss_fn = nn.CrossEntropyLoss().to(loss_device)
|
32 |
+
|
33 |
+
def do_gradient_ops(self):
|
34 |
+
# Gradient scale
|
35 |
+
self.similarity_weight.grad *= 0.01
|
36 |
+
self.similarity_bias.grad *= 0.01
|
37 |
+
|
38 |
+
# Gradient clipping
|
39 |
+
clip_grad_norm_(self.parameters(), 3, norm_type=2)
|
40 |
+
|
41 |
+
def forward(self, utterances, hidden_init=None):
|
42 |
+
"""
|
43 |
+
Computes the embeddings of a batch of utterance spectrograms.
|
44 |
+
|
45 |
+
:param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape
|
46 |
+
(batch_size, n_frames, n_channels)
|
47 |
+
:param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers,
|
48 |
+
batch_size, hidden_size). Will default to a tensor of zeros if None.
|
49 |
+
:return: the embeddings as a tensor of shape (batch_size, embedding_size)
|
50 |
+
"""
|
51 |
+
# Pass the input through the LSTM layers and retrieve all outputs, the final hidden state
|
52 |
+
# and the final cell state.
|
53 |
+
out, (hidden, cell) = self.lstm(utterances, hidden_init)
|
54 |
+
|
55 |
+
# We take only the hidden state of the last layer
|
56 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
57 |
+
|
58 |
+
# L2-normalize it
|
59 |
+
embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
60 |
+
|
61 |
+
return embeds
|
62 |
+
|
63 |
+
def similarity_matrix(self, embeds):
|
64 |
+
"""
|
65 |
+
Computes the similarity matrix according the section 2.1 of GE2E.
|
66 |
+
|
67 |
+
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
|
68 |
+
utterances_per_speaker, embedding_size)
|
69 |
+
:return: the similarity matrix as a tensor of shape (speakers_per_batch,
|
70 |
+
utterances_per_speaker, speakers_per_batch)
|
71 |
+
"""
|
72 |
+
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
|
73 |
+
|
74 |
+
# Inclusive centroids (1 per speaker). Cloning is needed for reverse differentiation
|
75 |
+
centroids_incl = torch.mean(embeds, dim=1, keepdim=True)
|
76 |
+
centroids_incl = centroids_incl.clone() / torch.norm(centroids_incl, dim=2, keepdim=True)
|
77 |
+
|
78 |
+
# Exclusive centroids (1 per utterance)
|
79 |
+
centroids_excl = (torch.sum(embeds, dim=1, keepdim=True) - embeds)
|
80 |
+
centroids_excl /= (utterances_per_speaker - 1)
|
81 |
+
centroids_excl = centroids_excl.clone() / torch.norm(centroids_excl, dim=2, keepdim=True)
|
82 |
+
|
83 |
+
# Similarity matrix. The cosine similarity of already 2-normed vectors is simply the dot
|
84 |
+
# product of these vectors (which is just an element-wise multiplication reduced by a sum).
|
85 |
+
# We vectorize the computation for efficiency.
|
86 |
+
sim_matrix = torch.zeros(speakers_per_batch, utterances_per_speaker,
|
87 |
+
speakers_per_batch).to(self.loss_device)
|
88 |
+
mask_matrix = 1 - np.eye(speakers_per_batch, dtype=np.int)
|
89 |
+
for j in range(speakers_per_batch):
|
90 |
+
mask = np.where(mask_matrix[j])[0]
|
91 |
+
sim_matrix[mask, :, j] = (embeds[mask] * centroids_incl[j]).sum(dim=2)
|
92 |
+
sim_matrix[j, :, j] = (embeds[j] * centroids_excl[j]).sum(dim=1)
|
93 |
+
|
94 |
+
## Even more vectorized version (slower maybe because of transpose)
|
95 |
+
# sim_matrix2 = torch.zeros(speakers_per_batch, speakers_per_batch, utterances_per_speaker
|
96 |
+
# ).to(self.loss_device)
|
97 |
+
# eye = np.eye(speakers_per_batch, dtype=np.int)
|
98 |
+
# mask = np.where(1 - eye)
|
99 |
+
# sim_matrix2[mask] = (embeds[mask[0]] * centroids_incl[mask[1]]).sum(dim=2)
|
100 |
+
# mask = np.where(eye)
|
101 |
+
# sim_matrix2[mask] = (embeds * centroids_excl).sum(dim=2)
|
102 |
+
# sim_matrix2 = sim_matrix2.transpose(1, 2)
|
103 |
+
|
104 |
+
sim_matrix = sim_matrix * self.similarity_weight + self.similarity_bias
|
105 |
+
return sim_matrix
|
106 |
+
|
107 |
+
def loss(self, embeds):
|
108 |
+
"""
|
109 |
+
Computes the softmax loss according the section 2.1 of GE2E.
|
110 |
+
|
111 |
+
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
|
112 |
+
utterances_per_speaker, embedding_size)
|
113 |
+
:return: the loss and the EER for this batch of embeddings.
|
114 |
+
"""
|
115 |
+
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
|
116 |
+
|
117 |
+
# Loss
|
118 |
+
sim_matrix = self.similarity_matrix(embeds)
|
119 |
+
sim_matrix = sim_matrix.reshape((speakers_per_batch * utterances_per_speaker,
|
120 |
+
speakers_per_batch))
|
121 |
+
ground_truth = np.repeat(np.arange(speakers_per_batch), utterances_per_speaker)
|
122 |
+
target = torch.from_numpy(ground_truth).long().to(self.loss_device)
|
123 |
+
loss = self.loss_fn(sim_matrix, target)
|
124 |
+
|
125 |
+
# EER (not backpropagated)
|
126 |
+
with torch.no_grad():
|
127 |
+
inv_argmax = lambda i: np.eye(1, speakers_per_batch, i, dtype=np.int)[0]
|
128 |
+
labels = np.array([inv_argmax(i) for i in ground_truth])
|
129 |
+
preds = sim_matrix.detach().cpu().numpy()
|
130 |
+
|
131 |
+
# Snippet from https://yangcha.github.io/EER-ROC/
|
132 |
+
fpr, tpr, thresholds = roc_curve(labels.flatten(), preds.flatten())
|
133 |
+
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
|
134 |
+
|
135 |
+
return loss, eer
|
speaker_encoder/speaker_encoder_params_data.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## Mel-filterbank
|
3 |
+
mel_window_length = 25 # In milliseconds
|
4 |
+
mel_window_step = 10 # In milliseconds
|
5 |
+
mel_n_channels = 40
|
6 |
+
|
7 |
+
|
8 |
+
## Audio
|
9 |
+
sampling_rate = 16000
|
10 |
+
# Number of spectrogram frames in a partial utterance
|
11 |
+
partials_n_frames = 160 # 1600 ms
|
12 |
+
# Number of spectrogram frames at inference
|
13 |
+
inference_n_frames = 80 # 800 ms
|
14 |
+
|
15 |
+
|
16 |
+
## Voice Activation Detection
|
17 |
+
# Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
|
18 |
+
# This sets the granularity of the VAD. Should not need to be changed.
|
19 |
+
vad_window_length = 30 # In milliseconds
|
20 |
+
# Number of frames to average together when performing the moving average smoothing.
|
21 |
+
# The larger this value, the larger the VAD variations must be to not get smoothed out.
|
22 |
+
vad_moving_average_width = 8
|
23 |
+
# Maximum number of consecutive silent frames a segment can have.
|
24 |
+
vad_max_silence_length = 6
|
25 |
+
|
26 |
+
|
27 |
+
## Audio volume normalization
|
28 |
+
audio_norm_target_dBFS = -30
|
29 |
+
|
speaker_encoder/speaker_encoder_params_model.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## Model parameters
|
3 |
+
model_hidden_size = 256
|
4 |
+
model_embedding_size = 256
|
5 |
+
model_num_layers = 3
|
6 |
+
|
7 |
+
|
8 |
+
## Training parameters
|
9 |
+
learning_rate_init = 1e-4
|
10 |
+
speakers_per_batch = 64
|
11 |
+
utterances_per_speaker = 10
|
speaker_encoder/speaker_encoder_preprocess.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from multiprocess.pool import ThreadPool
|
2 |
+
from speaker_encoder.params_data import *
|
3 |
+
from speaker_encoder.config import librispeech_datasets, anglophone_nationalites
|
4 |
+
from datetime import datetime
|
5 |
+
from speaker_encoder import audio
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm import tqdm
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
class DatasetLog:
|
12 |
+
"""
|
13 |
+
Registers metadata about the dataset in a text file.
|
14 |
+
"""
|
15 |
+
def __init__(self, root, name):
|
16 |
+
self.text_file = open(Path(root, "Log_%s.txt" % name.replace("/", "_")), "w")
|
17 |
+
self.sample_data = dict()
|
18 |
+
|
19 |
+
start_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M"))
|
20 |
+
self.write_line("Creating dataset %s on %s" % (name, start_time))
|
21 |
+
self.write_line("-----")
|
22 |
+
self._log_params()
|
23 |
+
|
24 |
+
def _log_params(self):
|
25 |
+
from speaker_encoder import params_data
|
26 |
+
self.write_line("Parameter values:")
|
27 |
+
for param_name in (p for p in dir(params_data) if not p.startswith("__")):
|
28 |
+
value = getattr(params_data, param_name)
|
29 |
+
self.write_line("\t%s: %s" % (param_name, value))
|
30 |
+
self.write_line("-----")
|
31 |
+
|
32 |
+
def write_line(self, line):
|
33 |
+
self.text_file.write("%s\n" % line)
|
34 |
+
|
35 |
+
def add_sample(self, **kwargs):
|
36 |
+
for param_name, value in kwargs.items():
|
37 |
+
if not param_name in self.sample_data:
|
38 |
+
self.sample_data[param_name] = []
|
39 |
+
self.sample_data[param_name].append(value)
|
40 |
+
|
41 |
+
def finalize(self):
|
42 |
+
self.write_line("Statistics:")
|
43 |
+
for param_name, values in self.sample_data.items():
|
44 |
+
self.write_line("\t%s:" % param_name)
|
45 |
+
self.write_line("\t\tmin %.3f, max %.3f" % (np.min(values), np.max(values)))
|
46 |
+
self.write_line("\t\tmean %.3f, median %.3f" % (np.mean(values), np.median(values)))
|
47 |
+
self.write_line("-----")
|
48 |
+
end_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M"))
|
49 |
+
self.write_line("Finished on %s" % end_time)
|
50 |
+
self.text_file.close()
|
51 |
+
|
52 |
+
|
53 |
+
def _init_preprocess_dataset(dataset_name, datasets_root, out_dir) -> (Path, DatasetLog):
|
54 |
+
dataset_root = datasets_root.joinpath(dataset_name)
|
55 |
+
if not dataset_root.exists():
|
56 |
+
print("Couldn\'t find %s, skipping this dataset." % dataset_root)
|
57 |
+
return None, None
|
58 |
+
return dataset_root, DatasetLog(out_dir, dataset_name)
|
59 |
+
|
60 |
+
|
61 |
+
def _preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, extension,
|
62 |
+
skip_existing, logger):
|
63 |
+
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs)))
|
64 |
+
|
65 |
+
# Function to preprocess utterances for one speaker
|
66 |
+
def preprocess_speaker(speaker_dir: Path):
|
67 |
+
# Give a name to the speaker that includes its dataset
|
68 |
+
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
|
69 |
+
|
70 |
+
# Create an output directory with that name, as well as a txt file containing a
|
71 |
+
# reference to each source file.
|
72 |
+
speaker_out_dir = out_dir.joinpath(speaker_name)
|
73 |
+
speaker_out_dir.mkdir(exist_ok=True)
|
74 |
+
sources_fpath = speaker_out_dir.joinpath("_sources.txt")
|
75 |
+
|
76 |
+
# There's a possibility that the preprocessing was interrupted earlier, check if
|
77 |
+
# there already is a sources file.
|
78 |
+
if sources_fpath.exists():
|
79 |
+
try:
|
80 |
+
with sources_fpath.open("r") as sources_file:
|
81 |
+
existing_fnames = {line.split(",")[0] for line in sources_file}
|
82 |
+
except:
|
83 |
+
existing_fnames = {}
|
84 |
+
else:
|
85 |
+
existing_fnames = {}
|
86 |
+
|
87 |
+
# Gather all audio files for that speaker recursively
|
88 |
+
sources_file = sources_fpath.open("a" if skip_existing else "w")
|
89 |
+
for in_fpath in speaker_dir.glob("**/*.%s" % extension):
|
90 |
+
# Check if the target output file already exists
|
91 |
+
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts)
|
92 |
+
out_fname = out_fname.replace(".%s" % extension, ".npy")
|
93 |
+
if skip_existing and out_fname in existing_fnames:
|
94 |
+
continue
|
95 |
+
|
96 |
+
# Load and preprocess the waveform
|
97 |
+
wav = audio.preprocess_wav(in_fpath)
|
98 |
+
if len(wav) == 0:
|
99 |
+
continue
|
100 |
+
|
101 |
+
# Create the mel spectrogram, discard those that are too short
|
102 |
+
frames = audio.wav_to_mel_spectrogram(wav)
|
103 |
+
if len(frames) < partials_n_frames:
|
104 |
+
continue
|
105 |
+
|
106 |
+
out_fpath = speaker_out_dir.joinpath(out_fname)
|
107 |
+
np.save(out_fpath, frames)
|
108 |
+
logger.add_sample(duration=len(wav) / sampling_rate)
|
109 |
+
sources_file.write("%s,%s\n" % (out_fname, in_fpath))
|
110 |
+
|
111 |
+
sources_file.close()
|
112 |
+
|
113 |
+
# Process the utterances for each speaker
|
114 |
+
with ThreadPool(8) as pool:
|
115 |
+
list(tqdm(pool.imap(preprocess_speaker, speaker_dirs), dataset_name, len(speaker_dirs),
|
116 |
+
unit="speakers"))
|
117 |
+
logger.finalize()
|
118 |
+
print("Done preprocessing %s.\n" % dataset_name)
|
119 |
+
|
120 |
+
|
121 |
+
# Function to preprocess utterances for one speaker
|
122 |
+
def __preprocess_speaker(speaker_dir: Path, datasets_root: Path, out_dir: Path, extension: str, skip_existing: bool):
|
123 |
+
# Give a name to the speaker that includes its dataset
|
124 |
+
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
|
125 |
+
|
126 |
+
# Create an output directory with that name, as well as a txt file containing a
|
127 |
+
# reference to each source file.
|
128 |
+
speaker_out_dir = out_dir.joinpath(speaker_name)
|
129 |
+
speaker_out_dir.mkdir(exist_ok=True)
|
130 |
+
sources_fpath = speaker_out_dir.joinpath("_sources.txt")
|
131 |
+
|
132 |
+
# There's a possibility that the preprocessing was interrupted earlier, check if
|
133 |
+
# there already is a sources file.
|
134 |
+
# if sources_fpath.exists():
|
135 |
+
# try:
|
136 |
+
# with sources_fpath.open("r") as sources_file:
|
137 |
+
# existing_fnames = {line.split(",")[0] for line in sources_file}
|
138 |
+
# except:
|
139 |
+
# existing_fnames = {}
|
140 |
+
# else:
|
141 |
+
# existing_fnames = {}
|
142 |
+
existing_fnames = {}
|
143 |
+
# Gather all audio files for that speaker recursively
|
144 |
+
sources_file = sources_fpath.open("a" if skip_existing else "w")
|
145 |
+
|
146 |
+
for in_fpath in speaker_dir.glob("**/*.%s" % extension):
|
147 |
+
# Check if the target output file already exists
|
148 |
+
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts)
|
149 |
+
out_fname = out_fname.replace(".%s" % extension, ".npy")
|
150 |
+
if skip_existing and out_fname in existing_fnames:
|
151 |
+
continue
|
152 |
+
|
153 |
+
# Load and preprocess the waveform
|
154 |
+
wav = audio.preprocess_wav(in_fpath)
|
155 |
+
if len(wav) == 0:
|
156 |
+
continue
|
157 |
+
|
158 |
+
# Create the mel spectrogram, discard those that are too short
|
159 |
+
frames = audio.wav_to_mel_spectrogram(wav)
|
160 |
+
if len(frames) < partials_n_frames:
|
161 |
+
continue
|
162 |
+
|
163 |
+
out_fpath = speaker_out_dir.joinpath(out_fname)
|
164 |
+
np.save(out_fpath, frames)
|
165 |
+
# logger.add_sample(duration=len(wav) / sampling_rate)
|
166 |
+
sources_file.write("%s,%s\n" % (out_fname, in_fpath))
|
167 |
+
|
168 |
+
sources_file.close()
|
169 |
+
return len(wav)
|
170 |
+
|
171 |
+
def _preprocess_speaker_dirs_vox2(speaker_dirs, dataset_name, datasets_root, out_dir, extension,
|
172 |
+
skip_existing, logger):
|
173 |
+
# from multiprocessing import Pool, cpu_count
|
174 |
+
from pathos.multiprocessing import ProcessingPool as Pool
|
175 |
+
# Function to preprocess utterances for one speaker
|
176 |
+
def __preprocess_speaker(speaker_dir: Path):
|
177 |
+
# Give a name to the speaker that includes its dataset
|
178 |
+
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
|
179 |
+
|
180 |
+
# Create an output directory with that name, as well as a txt file containing a
|
181 |
+
# reference to each source file.
|
182 |
+
speaker_out_dir = out_dir.joinpath(speaker_name)
|
183 |
+
speaker_out_dir.mkdir(exist_ok=True)
|
184 |
+
sources_fpath = speaker_out_dir.joinpath("_sources.txt")
|
185 |
+
|
186 |
+
existing_fnames = {}
|
187 |
+
# Gather all audio files for that speaker recursively
|
188 |
+
sources_file = sources_fpath.open("a" if skip_existing else "w")
|
189 |
+
wav_lens = []
|
190 |
+
for in_fpath in speaker_dir.glob("**/*.%s" % extension):
|
191 |
+
# Check if the target output file already exists
|
192 |
+
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts)
|
193 |
+
out_fname = out_fname.replace(".%s" % extension, ".npy")
|
194 |
+
if skip_existing and out_fname in existing_fnames:
|
195 |
+
continue
|
196 |
+
|
197 |
+
# Load and preprocess the waveform
|
198 |
+
wav = audio.preprocess_wav(in_fpath)
|
199 |
+
if len(wav) == 0:
|
200 |
+
continue
|
201 |
+
|
202 |
+
# Create the mel spectrogram, discard those that are too short
|
203 |
+
frames = audio.wav_to_mel_spectrogram(wav)
|
204 |
+
if len(frames) < partials_n_frames:
|
205 |
+
continue
|
206 |
+
|
207 |
+
out_fpath = speaker_out_dir.joinpath(out_fname)
|
208 |
+
np.save(out_fpath, frames)
|
209 |
+
# logger.add_sample(duration=len(wav) / sampling_rate)
|
210 |
+
sources_file.write("%s,%s\n" % (out_fname, in_fpath))
|
211 |
+
wav_lens.append(len(wav))
|
212 |
+
sources_file.close()
|
213 |
+
return wav_lens
|
214 |
+
|
215 |
+
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs)))
|
216 |
+
# Process the utterances for each speaker
|
217 |
+
# with ThreadPool(8) as pool:
|
218 |
+
# list(tqdm(pool.imap(preprocess_speaker, speaker_dirs), dataset_name, len(speaker_dirs),
|
219 |
+
# unit="speakers"))
|
220 |
+
pool = Pool(processes=20)
|
221 |
+
for i, wav_lens in enumerate(pool.map(__preprocess_speaker, speaker_dirs), 1):
|
222 |
+
for wav_len in wav_lens:
|
223 |
+
logger.add_sample(duration=wav_len / sampling_rate)
|
224 |
+
print(f'{i}/{len(speaker_dirs)} \r')
|
225 |
+
|
226 |
+
logger.finalize()
|
227 |
+
print("Done preprocessing %s.\n" % dataset_name)
|
228 |
+
|
229 |
+
|
230 |
+
def preprocess_librispeech(datasets_root: Path, out_dir: Path, skip_existing=False):
|
231 |
+
for dataset_name in librispeech_datasets["train"]["other"]:
|
232 |
+
# Initialize the preprocessing
|
233 |
+
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
234 |
+
if not dataset_root:
|
235 |
+
return
|
236 |
+
|
237 |
+
# Preprocess all speakers
|
238 |
+
speaker_dirs = list(dataset_root.glob("*"))
|
239 |
+
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "flac",
|
240 |
+
skip_existing, logger)
|
241 |
+
|
242 |
+
|
243 |
+
def preprocess_voxceleb1(datasets_root: Path, out_dir: Path, skip_existing=False):
|
244 |
+
# Initialize the preprocessing
|
245 |
+
dataset_name = "VoxCeleb1"
|
246 |
+
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
247 |
+
if not dataset_root:
|
248 |
+
return
|
249 |
+
|
250 |
+
# Get the contents of the meta file
|
251 |
+
with dataset_root.joinpath("vox1_meta.csv").open("r") as metafile:
|
252 |
+
metadata = [line.split("\t") for line in metafile][1:]
|
253 |
+
|
254 |
+
# Select the ID and the nationality, filter out non-anglophone speakers
|
255 |
+
nationalities = {line[0]: line[3] for line in metadata}
|
256 |
+
# keep_speaker_ids = [speaker_id for speaker_id, nationality in nationalities.items() if
|
257 |
+
# nationality.lower() in anglophone_nationalites]
|
258 |
+
keep_speaker_ids = [speaker_id for speaker_id, nationality in nationalities.items()]
|
259 |
+
print("VoxCeleb1: using samples from %d (presumed anglophone) speakers out of %d." %
|
260 |
+
(len(keep_speaker_ids), len(nationalities)))
|
261 |
+
|
262 |
+
# Get the speaker directories for anglophone speakers only
|
263 |
+
speaker_dirs = dataset_root.joinpath("wav").glob("*")
|
264 |
+
speaker_dirs = [speaker_dir for speaker_dir in speaker_dirs if
|
265 |
+
speaker_dir.name in keep_speaker_ids]
|
266 |
+
print("VoxCeleb1: found %d anglophone speakers on the disk, %d missing (this is normal)." %
|
267 |
+
(len(speaker_dirs), len(keep_speaker_ids) - len(speaker_dirs)))
|
268 |
+
|
269 |
+
# Preprocess all speakers
|
270 |
+
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "wav",
|
271 |
+
skip_existing, logger)
|
272 |
+
|
273 |
+
|
274 |
+
def preprocess_voxceleb2(datasets_root: Path, out_dir: Path, skip_existing=False):
|
275 |
+
# Initialize the preprocessing
|
276 |
+
dataset_name = "VoxCeleb2"
|
277 |
+
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
278 |
+
if not dataset_root:
|
279 |
+
return
|
280 |
+
|
281 |
+
# Get the speaker directories
|
282 |
+
# Preprocess all speakers
|
283 |
+
speaker_dirs = list(dataset_root.joinpath("dev", "aac").glob("*"))
|
284 |
+
_preprocess_speaker_dirs_vox2(speaker_dirs, dataset_name, datasets_root, out_dir, "m4a",
|
285 |
+
skip_existing, logger)
|
speaker_encoder/speaker_encoder_train.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.visualizations import Visualizations
|
2 |
+
from speaker_encoder.data_objects import SpeakerVerificationDataLoader, SpeakerVerificationDataset
|
3 |
+
from speaker_encoder.params_model import *
|
4 |
+
from speaker_encoder.model import SpeakerEncoder
|
5 |
+
from utils.profiler import Profiler
|
6 |
+
from pathlib import Path
|
7 |
+
import torch
|
8 |
+
|
9 |
+
def sync(device: torch.device):
|
10 |
+
# FIXME
|
11 |
+
return
|
12 |
+
# For correct profiling (cuda operations are async)
|
13 |
+
if device.type == "cuda":
|
14 |
+
torch.cuda.synchronize(device)
|
15 |
+
|
16 |
+
def train(run_id: str, clean_data_root: Path, models_dir: Path, umap_every: int, save_every: int,
|
17 |
+
backup_every: int, vis_every: int, force_restart: bool, visdom_server: str,
|
18 |
+
no_visdom: bool):
|
19 |
+
# Create a dataset and a dataloader
|
20 |
+
dataset = SpeakerVerificationDataset(clean_data_root)
|
21 |
+
loader = SpeakerVerificationDataLoader(
|
22 |
+
dataset,
|
23 |
+
speakers_per_batch, # 64
|
24 |
+
utterances_per_speaker, # 10
|
25 |
+
num_workers=8,
|
26 |
+
)
|
27 |
+
|
28 |
+
# Setup the device on which to run the forward pass and the loss. These can be different,
|
29 |
+
# because the forward pass is faster on the GPU whereas the loss is often (depending on your
|
30 |
+
# hyperparameters) faster on the CPU.
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
# FIXME: currently, the gradient is None if loss_device is cuda
|
33 |
+
loss_device = torch.device("cpu")
|
34 |
+
|
35 |
+
# Create the model and the optimizer
|
36 |
+
model = SpeakerEncoder(device, loss_device)
|
37 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init)
|
38 |
+
init_step = 1
|
39 |
+
|
40 |
+
# Configure file path for the model
|
41 |
+
state_fpath = models_dir.joinpath(run_id + ".pt")
|
42 |
+
backup_dir = models_dir.joinpath(run_id + "_backups")
|
43 |
+
|
44 |
+
# Load any existing model
|
45 |
+
if not force_restart:
|
46 |
+
if state_fpath.exists():
|
47 |
+
print("Found existing model \"%s\", loading it and resuming training." % run_id)
|
48 |
+
checkpoint = torch.load(state_fpath)
|
49 |
+
init_step = checkpoint["step"]
|
50 |
+
model.load_state_dict(checkpoint["model_state"])
|
51 |
+
optimizer.load_state_dict(checkpoint["optimizer_state"])
|
52 |
+
optimizer.param_groups[0]["lr"] = learning_rate_init
|
53 |
+
else:
|
54 |
+
print("No model \"%s\" found, starting training from scratch." % run_id)
|
55 |
+
else:
|
56 |
+
print("Starting the training from scratch.")
|
57 |
+
model.train()
|
58 |
+
|
59 |
+
# Initialize the visualization environment
|
60 |
+
vis = Visualizations(run_id, vis_every, server=visdom_server, disabled=no_visdom)
|
61 |
+
vis.log_dataset(dataset)
|
62 |
+
vis.log_params()
|
63 |
+
device_name = str(torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU")
|
64 |
+
vis.log_implementation({"Device": device_name})
|
65 |
+
|
66 |
+
# Training loop
|
67 |
+
profiler = Profiler(summarize_every=10, disabled=False)
|
68 |
+
for step, speaker_batch in enumerate(loader, init_step):
|
69 |
+
profiler.tick("Blocking, waiting for batch (threaded)")
|
70 |
+
|
71 |
+
# Forward pass
|
72 |
+
inputs = torch.from_numpy(speaker_batch.data).to(device)
|
73 |
+
sync(device)
|
74 |
+
profiler.tick("Data to %s" % device)
|
75 |
+
embeds = model(inputs)
|
76 |
+
sync(device)
|
77 |
+
profiler.tick("Forward pass")
|
78 |
+
embeds_loss = embeds.view((speakers_per_batch, utterances_per_speaker, -1)).to(loss_device)
|
79 |
+
loss, eer = model.loss(embeds_loss)
|
80 |
+
sync(loss_device)
|
81 |
+
profiler.tick("Loss")
|
82 |
+
|
83 |
+
# Backward pass
|
84 |
+
model.zero_grad()
|
85 |
+
loss.backward()
|
86 |
+
profiler.tick("Backward pass")
|
87 |
+
model.do_gradient_ops()
|
88 |
+
optimizer.step()
|
89 |
+
profiler.tick("Parameter update")
|
90 |
+
|
91 |
+
# Update visualizations
|
92 |
+
# learning_rate = optimizer.param_groups[0]["lr"]
|
93 |
+
vis.update(loss.item(), eer, step)
|
94 |
+
|
95 |
+
# Draw projections and save them to the backup folder
|
96 |
+
if umap_every != 0 and step % umap_every == 0:
|
97 |
+
print("Drawing and saving projections (step %d)" % step)
|
98 |
+
backup_dir.mkdir(exist_ok=True)
|
99 |
+
projection_fpath = backup_dir.joinpath("%s_umap_%06d.png" % (run_id, step))
|
100 |
+
embeds = embeds.detach().cpu().numpy()
|
101 |
+
vis.draw_projections(embeds, utterances_per_speaker, step, projection_fpath)
|
102 |
+
vis.save()
|
103 |
+
|
104 |
+
# Overwrite the latest version of the model
|
105 |
+
if save_every != 0 and step % save_every == 0:
|
106 |
+
print("Saving the model (step %d)" % step)
|
107 |
+
torch.save({
|
108 |
+
"step": step + 1,
|
109 |
+
"model_state": model.state_dict(),
|
110 |
+
"optimizer_state": optimizer.state_dict(),
|
111 |
+
}, state_fpath)
|
112 |
+
|
113 |
+
# Make a backup
|
114 |
+
if backup_every != 0 and step % backup_every == 0:
|
115 |
+
print("Making a backup (step %d)" % step)
|
116 |
+
backup_dir.mkdir(exist_ok=True)
|
117 |
+
backup_fpath = backup_dir.joinpath("%s_bak_%06d.pt" % (run_id, step))
|
118 |
+
torch.save({
|
119 |
+
"step": step + 1,
|
120 |
+
"model_state": model.state_dict(),
|
121 |
+
"optimizer_state": optimizer.state_dict(),
|
122 |
+
}, backup_fpath)
|
123 |
+
|
124 |
+
profiler.tick("Extras (visualizations, saving)")
|
125 |
+
|
speaker_encoder/speaker_encoder_visualizations.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset
|
2 |
+
from datetime import datetime
|
3 |
+
from time import perf_counter as timer
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
# import webbrowser
|
7 |
+
import visdom
|
8 |
+
import umap
|
9 |
+
|
10 |
+
colormap = np.array([
|
11 |
+
[76, 255, 0],
|
12 |
+
[0, 127, 70],
|
13 |
+
[255, 0, 0],
|
14 |
+
[255, 217, 38],
|
15 |
+
[0, 135, 255],
|
16 |
+
[165, 0, 165],
|
17 |
+
[255, 167, 255],
|
18 |
+
[0, 255, 255],
|
19 |
+
[255, 96, 38],
|
20 |
+
[142, 76, 0],
|
21 |
+
[33, 0, 127],
|
22 |
+
[0, 0, 0],
|
23 |
+
[183, 183, 183],
|
24 |
+
], dtype=np.float) / 255
|
25 |
+
|
26 |
+
|
27 |
+
class Visualizations:
|
28 |
+
def __init__(self, env_name=None, update_every=10, server="http://localhost", disabled=False):
|
29 |
+
# Tracking data
|
30 |
+
self.last_update_timestamp = timer()
|
31 |
+
self.update_every = update_every
|
32 |
+
self.step_times = []
|
33 |
+
self.losses = []
|
34 |
+
self.eers = []
|
35 |
+
print("Updating the visualizations every %d steps." % update_every)
|
36 |
+
|
37 |
+
# If visdom is disabled TODO: use a better paradigm for that
|
38 |
+
self.disabled = disabled
|
39 |
+
if self.disabled:
|
40 |
+
return
|
41 |
+
|
42 |
+
# Set the environment name
|
43 |
+
now = str(datetime.now().strftime("%d-%m %Hh%M"))
|
44 |
+
if env_name is None:
|
45 |
+
self.env_name = now
|
46 |
+
else:
|
47 |
+
self.env_name = "%s (%s)" % (env_name, now)
|
48 |
+
|
49 |
+
# Connect to visdom and open the corresponding window in the browser
|
50 |
+
try:
|
51 |
+
self.vis = visdom.Visdom(server, env=self.env_name, raise_exceptions=True)
|
52 |
+
except ConnectionError:
|
53 |
+
raise Exception("No visdom server detected. Run the command \"visdom\" in your CLI to "
|
54 |
+
"start it.")
|
55 |
+
# webbrowser.open("http://localhost:8097/env/" + self.env_name)
|
56 |
+
|
57 |
+
# Create the windows
|
58 |
+
self.loss_win = None
|
59 |
+
self.eer_win = None
|
60 |
+
# self.lr_win = None
|
61 |
+
self.implementation_win = None
|
62 |
+
self.projection_win = None
|
63 |
+
self.implementation_string = ""
|
64 |
+
|
65 |
+
def log_params(self):
|
66 |
+
if self.disabled:
|
67 |
+
return
|
68 |
+
from speaker_encoder import params_data
|
69 |
+
from speaker_encoder import params_model
|
70 |
+
param_string = "<b>Model parameters</b>:<br>"
|
71 |
+
for param_name in (p for p in dir(params_model) if not p.startswith("__")):
|
72 |
+
value = getattr(params_model, param_name)
|
73 |
+
param_string += "\t%s: %s<br>" % (param_name, value)
|
74 |
+
param_string += "<b>Data parameters</b>:<br>"
|
75 |
+
for param_name in (p for p in dir(params_data) if not p.startswith("__")):
|
76 |
+
value = getattr(params_data, param_name)
|
77 |
+
param_string += "\t%s: %s<br>" % (param_name, value)
|
78 |
+
self.vis.text(param_string, opts={"title": "Parameters"})
|
79 |
+
|
80 |
+
def log_dataset(self, dataset: SpeakerVerificationDataset):
|
81 |
+
if self.disabled:
|
82 |
+
return
|
83 |
+
dataset_string = ""
|
84 |
+
dataset_string += "<b>Speakers</b>: %s\n" % len(dataset.speakers)
|
85 |
+
dataset_string += "\n" + dataset.get_logs()
|
86 |
+
dataset_string = dataset_string.replace("\n", "<br>")
|
87 |
+
self.vis.text(dataset_string, opts={"title": "Dataset"})
|
88 |
+
|
89 |
+
def log_implementation(self, params):
|
90 |
+
if self.disabled:
|
91 |
+
return
|
92 |
+
implementation_string = ""
|
93 |
+
for param, value in params.items():
|
94 |
+
implementation_string += "<b>%s</b>: %s\n" % (param, value)
|
95 |
+
implementation_string = implementation_string.replace("\n", "<br>")
|
96 |
+
self.implementation_string = implementation_string
|
97 |
+
self.implementation_win = self.vis.text(
|
98 |
+
implementation_string,
|
99 |
+
opts={"title": "Training implementation"}
|
100 |
+
)
|
101 |
+
|
102 |
+
def update(self, loss, eer, step):
|
103 |
+
# Update the tracking data
|
104 |
+
now = timer()
|
105 |
+
self.step_times.append(1000 * (now - self.last_update_timestamp))
|
106 |
+
self.last_update_timestamp = now
|
107 |
+
self.losses.append(loss)
|
108 |
+
self.eers.append(eer)
|
109 |
+
print(".", end="")
|
110 |
+
|
111 |
+
# Update the plots every <update_every> steps
|
112 |
+
if step % self.update_every != 0:
|
113 |
+
return
|
114 |
+
time_string = "Step time: mean: %5dms std: %5dms" % \
|
115 |
+
(int(np.mean(self.step_times)), int(np.std(self.step_times)))
|
116 |
+
print("\nStep %6d Loss: %.4f EER: %.4f %s" %
|
117 |
+
(step, np.mean(self.losses), np.mean(self.eers), time_string))
|
118 |
+
if not self.disabled:
|
119 |
+
self.loss_win = self.vis.line(
|
120 |
+
[np.mean(self.losses)],
|
121 |
+
[step],
|
122 |
+
win=self.loss_win,
|
123 |
+
update="append" if self.loss_win else None,
|
124 |
+
opts=dict(
|
125 |
+
legend=["Avg. loss"],
|
126 |
+
xlabel="Step",
|
127 |
+
ylabel="Loss",
|
128 |
+
title="Loss",
|
129 |
+
)
|
130 |
+
)
|
131 |
+
self.eer_win = self.vis.line(
|
132 |
+
[np.mean(self.eers)],
|
133 |
+
[step],
|
134 |
+
win=self.eer_win,
|
135 |
+
update="append" if self.eer_win else None,
|
136 |
+
opts=dict(
|
137 |
+
legend=["Avg. EER"],
|
138 |
+
xlabel="Step",
|
139 |
+
ylabel="EER",
|
140 |
+
title="Equal error rate"
|
141 |
+
)
|
142 |
+
)
|
143 |
+
if self.implementation_win is not None:
|
144 |
+
self.vis.text(
|
145 |
+
self.implementation_string + ("<b>%s</b>" % time_string),
|
146 |
+
win=self.implementation_win,
|
147 |
+
opts={"title": "Training implementation"},
|
148 |
+
)
|
149 |
+
|
150 |
+
# Reset the tracking
|
151 |
+
self.losses.clear()
|
152 |
+
self.eers.clear()
|
153 |
+
self.step_times.clear()
|
154 |
+
|
155 |
+
def draw_projections(self, embeds, utterances_per_speaker, step, out_fpath=None,
|
156 |
+
max_speakers=10):
|
157 |
+
max_speakers = min(max_speakers, len(colormap))
|
158 |
+
embeds = embeds[:max_speakers * utterances_per_speaker]
|
159 |
+
|
160 |
+
n_speakers = len(embeds) // utterances_per_speaker
|
161 |
+
ground_truth = np.repeat(np.arange(n_speakers), utterances_per_speaker)
|
162 |
+
colors = [colormap[i] for i in ground_truth]
|
163 |
+
|
164 |
+
reducer = umap.UMAP()
|
165 |
+
projected = reducer.fit_transform(embeds)
|
166 |
+
plt.scatter(projected[:, 0], projected[:, 1], c=colors)
|
167 |
+
plt.gca().set_aspect("equal", "datalim")
|
168 |
+
plt.title("UMAP projection (step %d)" % step)
|
169 |
+
if not self.disabled:
|
170 |
+
self.projection_win = self.vis.matplot(plt, win=self.projection_win)
|
171 |
+
if out_fpath is not None:
|
172 |
+
plt.savefig(out_fpath)
|
173 |
+
plt.clf()
|
174 |
+
|
175 |
+
def save(self):
|
176 |
+
if not self.disabled:
|
177 |
+
self.vis.save([self.env_name])
|
178 |
+
|
speaker_encoder/speaker_encoder_voice_encoder.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from speaker_encoder.hparams import *
|
2 |
+
from speaker_encoder import audio
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Union, List
|
5 |
+
from torch import nn
|
6 |
+
from time import perf_counter as timer
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
class SpeakerEncoder(nn.Module):
|
12 |
+
def __init__(self, weights_fpath, device: Union[str, torch.device]=None, verbose=True):
|
13 |
+
"""
|
14 |
+
:param device: either a torch device or the name of a torch device (e.g. "cpu", "cuda").
|
15 |
+
If None, defaults to cuda if it is available on your machine, otherwise the model will
|
16 |
+
run on cpu. Outputs are always returned on the cpu, as numpy arrays.
|
17 |
+
"""
|
18 |
+
super().__init__()
|
19 |
+
|
20 |
+
# Define the network
|
21 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
22 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
23 |
+
self.relu = nn.ReLU()
|
24 |
+
|
25 |
+
# Get the target device
|
26 |
+
if device is None:
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
elif isinstance(device, str):
|
29 |
+
device = torch.device(device)
|
30 |
+
self.device = device
|
31 |
+
|
32 |
+
# Load the pretrained model'speaker weights
|
33 |
+
# weights_fpath = Path(__file__).resolve().parent.joinpath("pretrained.pt")
|
34 |
+
# if not weights_fpath.exists():
|
35 |
+
# raise Exception("Couldn't find the voice encoder pretrained model at %s." %
|
36 |
+
# weights_fpath)
|
37 |
+
|
38 |
+
start = timer()
|
39 |
+
checkpoint = torch.load(weights_fpath, map_location="cpu")
|
40 |
+
|
41 |
+
self.load_state_dict(checkpoint["model_state"], strict=False)
|
42 |
+
self.to(device)
|
43 |
+
|
44 |
+
if verbose:
|
45 |
+
print("Loaded the voice encoder model on %s in %.2f seconds." %
|
46 |
+
(device.type, timer() - start))
|
47 |
+
|
48 |
+
def forward(self, mels: torch.FloatTensor):
|
49 |
+
"""
|
50 |
+
Computes the embeddings of a batch of utterance spectrograms.
|
51 |
+
:param mels: a batch of mel spectrograms of same duration as a float32 tensor of shape
|
52 |
+
(batch_size, n_frames, n_channels)
|
53 |
+
:return: the embeddings as a float 32 tensor of shape (batch_size, embedding_size).
|
54 |
+
Embeddings are positive and L2-normed, thus they lay in the range [0, 1].
|
55 |
+
"""
|
56 |
+
# Pass the input through the LSTM layers and retrieve the final hidden state of the last
|
57 |
+
# layer. Apply a cutoff to 0 for negative values and L2 normalize the embeddings.
|
58 |
+
_, (hidden, _) = self.lstm(mels)
|
59 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
60 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def compute_partial_slices(n_samples: int, rate, min_coverage):
|
64 |
+
"""
|
65 |
+
Computes where to split an utterance waveform and its corresponding mel spectrogram to
|
66 |
+
obtain partial utterances of <partials_n_frames> each. Both the waveform and the
|
67 |
+
mel spectrogram slices are returned, so as to make each partial utterance waveform
|
68 |
+
correspond to its spectrogram.
|
69 |
+
|
70 |
+
The returned ranges may be indexing further than the length of the waveform. It is
|
71 |
+
recommended that you pad the waveform with zeros up to wav_slices[-1].stop.
|
72 |
+
|
73 |
+
:param n_samples: the number of samples in the waveform
|
74 |
+
:param rate: how many partial utterances should occur per second. Partial utterances must
|
75 |
+
cover the span of the entire utterance, thus the rate should not be lower than the inverse
|
76 |
+
of the duration of a partial utterance. By default, partial utterances are 1.6s long and
|
77 |
+
the minimum rate is thus 0.625.
|
78 |
+
:param min_coverage: when reaching the last partial utterance, it may or may not have
|
79 |
+
enough frames. If at least <min_pad_coverage> of <partials_n_frames> are present,
|
80 |
+
then the last partial utterance will be considered by zero-padding the audio. Otherwise,
|
81 |
+
it will be discarded. If there aren't enough frames for one partial utterance,
|
82 |
+
this parameter is ignored so that the function always returns at least one slice.
|
83 |
+
:return: the waveform slices and mel spectrogram slices as lists of array slices. Index
|
84 |
+
respectively the waveform and the mel spectrogram with these slices to obtain the partial
|
85 |
+
utterances.
|
86 |
+
"""
|
87 |
+
assert 0 < min_coverage <= 1
|
88 |
+
|
89 |
+
# Compute how many frames separate two partial utterances
|
90 |
+
samples_per_frame = int((sampling_rate * mel_window_step / 1000))
|
91 |
+
n_frames = int(np.ceil((n_samples + 1) / samples_per_frame))
|
92 |
+
frame_step = int(np.round((sampling_rate / rate) / samples_per_frame))
|
93 |
+
assert 0 < frame_step, "The rate is too high"
|
94 |
+
assert frame_step <= partials_n_frames, "The rate is too low, it should be %f at least" % \
|
95 |
+
(sampling_rate / (samples_per_frame * partials_n_frames))
|
96 |
+
|
97 |
+
# Compute the slices
|
98 |
+
wav_slices, mel_slices = [], []
|
99 |
+
steps = max(1, n_frames - partials_n_frames + frame_step + 1)
|
100 |
+
for i in range(0, steps, frame_step):
|
101 |
+
mel_range = np.array([i, i + partials_n_frames])
|
102 |
+
wav_range = mel_range * samples_per_frame
|
103 |
+
mel_slices.append(slice(*mel_range))
|
104 |
+
wav_slices.append(slice(*wav_range))
|
105 |
+
|
106 |
+
# Evaluate whether extra padding is warranted or not
|
107 |
+
last_wav_range = wav_slices[-1]
|
108 |
+
coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start)
|
109 |
+
if coverage < min_coverage and len(mel_slices) > 1:
|
110 |
+
mel_slices = mel_slices[:-1]
|
111 |
+
wav_slices = wav_slices[:-1]
|
112 |
+
|
113 |
+
return wav_slices, mel_slices
|
114 |
+
|
115 |
+
def embed_utterance(self, wav: np.ndarray, return_partials=False, rate=1.3, min_coverage=0.75):
|
116 |
+
"""
|
117 |
+
Computes an embedding for a single utterance. The utterance is divided in partial
|
118 |
+
utterances and an embedding is computed for each. The complete utterance embedding is the
|
119 |
+
L2-normed average embedding of the partial utterances.
|
120 |
+
|
121 |
+
TODO: independent batched version of this function
|
122 |
+
|
123 |
+
:param wav: a preprocessed utterance waveform as a numpy array of float32
|
124 |
+
:param return_partials: if True, the partial embeddings will also be returned along with
|
125 |
+
the wav slices corresponding to each partial utterance.
|
126 |
+
:param rate: how many partial utterances should occur per second. Partial utterances must
|
127 |
+
cover the span of the entire utterance, thus the rate should not be lower than the inverse
|
128 |
+
of the duration of a partial utterance. By default, partial utterances are 1.6s long and
|
129 |
+
the minimum rate is thus 0.625.
|
130 |
+
:param min_coverage: when reaching the last partial utterance, it may or may not have
|
131 |
+
enough frames. If at least <min_pad_coverage> of <partials_n_frames> are present,
|
132 |
+
then the last partial utterance will be considered by zero-padding the audio. Otherwise,
|
133 |
+
it will be discarded. If there aren't enough frames for one partial utterance,
|
134 |
+
this parameter is ignored so that the function always returns at least one slice.
|
135 |
+
:return: the embedding as a numpy array of float32 of shape (model_embedding_size,). If
|
136 |
+
<return_partials> is True, the partial utterances as a numpy array of float32 of shape
|
137 |
+
(n_partials, model_embedding_size) and the wav partials as a list of slices will also be
|
138 |
+
returned.
|
139 |
+
"""
|
140 |
+
# Compute where to split the utterance into partials and pad the waveform with zeros if
|
141 |
+
# the partial utterances cover a larger range.
|
142 |
+
wav_slices, mel_slices = self.compute_partial_slices(len(wav), rate, min_coverage)
|
143 |
+
max_wave_length = wav_slices[-1].stop
|
144 |
+
if max_wave_length >= len(wav):
|
145 |
+
wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
|
146 |
+
|
147 |
+
# Split the utterance into partials and forward them through the model
|
148 |
+
mel = audio.wav_to_mel_spectrogram(wav)
|
149 |
+
mels = np.array([mel[s] for s in mel_slices])
|
150 |
+
with torch.no_grad():
|
151 |
+
mels = torch.from_numpy(mels).to(self.device)
|
152 |
+
partial_embeds = self(mels).cpu().numpy()
|
153 |
+
|
154 |
+
# Compute the utterance embedding from the partial embeddings
|
155 |
+
raw_embed = np.mean(partial_embeds, axis=0)
|
156 |
+
embed = raw_embed / np.linalg.norm(raw_embed, 2)
|
157 |
+
|
158 |
+
if return_partials:
|
159 |
+
return embed, partial_embeds, wav_slices
|
160 |
+
return embed
|
161 |
+
|
162 |
+
def embed_speaker(self, wavs: List[np.ndarray], **kwargs):
|
163 |
+
"""
|
164 |
+
Compute the embedding of a collection of wavs (presumably from the same speaker) by
|
165 |
+
averaging their embedding and L2-normalizing it.
|
166 |
+
|
167 |
+
:param wavs: list of wavs a numpy arrays of float32.
|
168 |
+
:param kwargs: extra arguments to embed_utterance()
|
169 |
+
:return: the embedding as a numpy array of float32 of shape (model_embedding_size,).
|
170 |
+
"""
|
171 |
+
raw_embed = np.mean([self.embed_utterance(wav, return_partials=False, **kwargs) \
|
172 |
+
for wav in wavs], axis=0)
|
173 |
+
return raw_embed / np.linalg.norm(raw_embed, 2)
|
utils.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import json
|
6 |
+
import subprocess
|
7 |
+
import numpy as np
|
8 |
+
from scipy.io.wavfile import read
|
9 |
+
import torch
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from commons import sequence_mask
|
12 |
+
|
13 |
+
MATPLOTLIB_FLAG = False
|
14 |
+
|
15 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
16 |
+
logger = logging
|
17 |
+
|
18 |
+
|
19 |
+
def get_cmodel(rank):
|
20 |
+
checkpoint = torch.load('wavlm/WavLM-Large.pt')
|
21 |
+
cfg = WavLMConfig(checkpoint['cfg'])
|
22 |
+
cmodel = WavLM(cfg).cuda(rank)
|
23 |
+
cmodel.load_state_dict(checkpoint['model'])
|
24 |
+
cmodel.eval()
|
25 |
+
return cmodel
|
26 |
+
|
27 |
+
|
28 |
+
def get_content(cmodel, y):
|
29 |
+
with torch.no_grad():
|
30 |
+
c = cmodel.extract_features(y.squeeze(1))[0]
|
31 |
+
c = c.transpose(1, 2)
|
32 |
+
return c
|
33 |
+
|
34 |
+
|
35 |
+
def get_vocoder(rank):
|
36 |
+
with open("hifigan/config.json", "r") as f:
|
37 |
+
config = json.load(f)
|
38 |
+
config = hifigan.AttrDict(config)
|
39 |
+
vocoder = hifigan.Generator(config)
|
40 |
+
ckpt = torch.load("hifigan/generator_v1")
|
41 |
+
vocoder.load_state_dict(ckpt["generator"])
|
42 |
+
vocoder.eval()
|
43 |
+
vocoder.remove_weight_norm()
|
44 |
+
vocoder.cuda(rank)
|
45 |
+
return vocoder
|
46 |
+
|
47 |
+
|
48 |
+
def transform(mel, height): # 68-92
|
49 |
+
#r = np.random.random()
|
50 |
+
#rate = r * 0.3 + 0.85 # 0.85-1.15
|
51 |
+
#height = int(mel.size(-2) * rate)
|
52 |
+
tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
|
53 |
+
if height >= mel.size(-2):
|
54 |
+
return tgt[:, :mel.size(-2), :]
|
55 |
+
else:
|
56 |
+
silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1)
|
57 |
+
silence += torch.randn_like(silence) / 10
|
58 |
+
return torch.cat((tgt, silence), 1)
|
59 |
+
|
60 |
+
|
61 |
+
def stretch(mel, width): # 0.5-2
|
62 |
+
return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
|
63 |
+
|
64 |
+
|
65 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
66 |
+
assert os.path.isfile(checkpoint_path)
|
67 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
68 |
+
iteration = checkpoint_dict['iteration']
|
69 |
+
learning_rate = checkpoint_dict['learning_rate']
|
70 |
+
if optimizer is not None:
|
71 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
72 |
+
saved_state_dict = checkpoint_dict['model']
|
73 |
+
if hasattr(model, 'module'):
|
74 |
+
state_dict = model.module.state_dict()
|
75 |
+
else:
|
76 |
+
state_dict = model.state_dict()
|
77 |
+
new_state_dict= {}
|
78 |
+
for k, v in state_dict.items():
|
79 |
+
try:
|
80 |
+
new_state_dict[k] = saved_state_dict[k]
|
81 |
+
except:
|
82 |
+
logger.info("%s is not in the checkpoint" % k)
|
83 |
+
new_state_dict[k] = v
|
84 |
+
if hasattr(model, 'module'):
|
85 |
+
model.module.load_state_dict(new_state_dict)
|
86 |
+
else:
|
87 |
+
model.load_state_dict(new_state_dict)
|
88 |
+
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
89 |
+
checkpoint_path, iteration))
|
90 |
+
return model, optimizer, learning_rate, iteration
|
91 |
+
|
92 |
+
|
93 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
94 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
95 |
+
iteration, checkpoint_path))
|
96 |
+
if hasattr(model, 'module'):
|
97 |
+
state_dict = model.module.state_dict()
|
98 |
+
else:
|
99 |
+
state_dict = model.state_dict()
|
100 |
+
torch.save({'model': state_dict,
|
101 |
+
'iteration': iteration,
|
102 |
+
'optimizer': optimizer.state_dict(),
|
103 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
104 |
+
|
105 |
+
|
106 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
107 |
+
for k, v in scalars.items():
|
108 |
+
writer.add_scalar(k, v, global_step)
|
109 |
+
for k, v in histograms.items():
|
110 |
+
writer.add_histogram(k, v, global_step)
|
111 |
+
for k, v in images.items():
|
112 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
113 |
+
for k, v in audios.items():
|
114 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
115 |
+
|
116 |
+
|
117 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
118 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
119 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
120 |
+
x = f_list[-1]
|
121 |
+
print(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
126 |
+
global MATPLOTLIB_FLAG
|
127 |
+
if not MATPLOTLIB_FLAG:
|
128 |
+
import matplotlib
|
129 |
+
matplotlib.use("Agg")
|
130 |
+
MATPLOTLIB_FLAG = True
|
131 |
+
mpl_logger = logging.getLogger('matplotlib')
|
132 |
+
mpl_logger.setLevel(logging.WARNING)
|
133 |
+
import matplotlib.pylab as plt
|
134 |
+
import numpy as np
|
135 |
+
|
136 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
137 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
138 |
+
interpolation='none')
|
139 |
+
plt.colorbar(im, ax=ax)
|
140 |
+
plt.xlabel("Frames")
|
141 |
+
plt.ylabel("Channels")
|
142 |
+
plt.tight_layout()
|
143 |
+
|
144 |
+
fig.canvas.draw()
|
145 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
146 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
147 |
+
plt.close()
|
148 |
+
return data
|
149 |
+
|
150 |
+
|
151 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
152 |
+
global MATPLOTLIB_FLAG
|
153 |
+
if not MATPLOTLIB_FLAG:
|
154 |
+
import matplotlib
|
155 |
+
matplotlib.use("Agg")
|
156 |
+
MATPLOTLIB_FLAG = True
|
157 |
+
mpl_logger = logging.getLogger('matplotlib')
|
158 |
+
mpl_logger.setLevel(logging.WARNING)
|
159 |
+
import matplotlib.pylab as plt
|
160 |
+
import numpy as np
|
161 |
+
|
162 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
163 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
164 |
+
interpolation='none')
|
165 |
+
fig.colorbar(im, ax=ax)
|
166 |
+
xlabel = 'Decoder timestep'
|
167 |
+
if info is not None:
|
168 |
+
xlabel += '\n\n' + info
|
169 |
+
plt.xlabel(xlabel)
|
170 |
+
plt.ylabel('Encoder timestep')
|
171 |
+
plt.tight_layout()
|
172 |
+
|
173 |
+
fig.canvas.draw()
|
174 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
175 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
176 |
+
plt.close()
|
177 |
+
return data
|
178 |
+
|
179 |
+
|
180 |
+
def load_wav_to_torch(full_path):
|
181 |
+
sampling_rate, data = read(full_path)
|
182 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
183 |
+
|
184 |
+
|
185 |
+
def load_filepaths_and_text(filename, split="|"):
|
186 |
+
with open(filename, encoding='utf-8') as f:
|
187 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
188 |
+
return filepaths_and_text
|
189 |
+
|
190 |
+
|
191 |
+
def get_hparams(init=True):
|
192 |
+
parser = argparse.ArgumentParser()
|
193 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
194 |
+
help='JSON file for configuration')
|
195 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
196 |
+
help='Model name')
|
197 |
+
|
198 |
+
args = parser.parse_args()
|
199 |
+
model_dir = os.path.join("./logs", args.model)
|
200 |
+
|
201 |
+
if not os.path.exists(model_dir):
|
202 |
+
os.makedirs(model_dir)
|
203 |
+
|
204 |
+
config_path = args.config
|
205 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
206 |
+
if init:
|
207 |
+
with open(config_path, "r") as f:
|
208 |
+
data = f.read()
|
209 |
+
with open(config_save_path, "w") as f:
|
210 |
+
f.write(data)
|
211 |
+
else:
|
212 |
+
with open(config_save_path, "r") as f:
|
213 |
+
data = f.read()
|
214 |
+
config = json.loads(data)
|
215 |
+
|
216 |
+
hparams = HParams(**config)
|
217 |
+
hparams.model_dir = model_dir
|
218 |
+
return hparams
|
219 |
+
|
220 |
+
|
221 |
+
def get_hparams_from_dir(model_dir):
|
222 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
223 |
+
with open(config_save_path, "r") as f:
|
224 |
+
data = f.read()
|
225 |
+
config = json.loads(data)
|
226 |
+
|
227 |
+
hparams =HParams(**config)
|
228 |
+
hparams.model_dir = model_dir
|
229 |
+
return hparams
|
230 |
+
|
231 |
+
|
232 |
+
def get_hparams_from_file(config_path):
|
233 |
+
with open(config_path, "r") as f:
|
234 |
+
data = f.read()
|
235 |
+
config = json.loads(data)
|
236 |
+
|
237 |
+
hparams =HParams(**config)
|
238 |
+
return hparams
|
239 |
+
|
240 |
+
|
241 |
+
def check_git_hash(model_dir):
|
242 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
243 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
244 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
245 |
+
source_dir
|
246 |
+
))
|
247 |
+
return
|
248 |
+
|
249 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
250 |
+
|
251 |
+
path = os.path.join(model_dir, "githash")
|
252 |
+
if os.path.exists(path):
|
253 |
+
saved_hash = open(path).read()
|
254 |
+
if saved_hash != cur_hash:
|
255 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
256 |
+
saved_hash[:8], cur_hash[:8]))
|
257 |
+
else:
|
258 |
+
open(path, "w").write(cur_hash)
|
259 |
+
|
260 |
+
|
261 |
+
def get_logger(model_dir, filename="train.log"):
|
262 |
+
global logger
|
263 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
264 |
+
logger.setLevel(logging.DEBUG)
|
265 |
+
|
266 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
267 |
+
if not os.path.exists(model_dir):
|
268 |
+
os.makedirs(model_dir)
|
269 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
270 |
+
h.setLevel(logging.DEBUG)
|
271 |
+
h.setFormatter(formatter)
|
272 |
+
logger.addHandler(h)
|
273 |
+
return logger
|
274 |
+
|
275 |
+
|
276 |
+
class HParams():
|
277 |
+
def __init__(self, **kwargs):
|
278 |
+
for k, v in kwargs.items():
|
279 |
+
if type(v) == dict:
|
280 |
+
v = HParams(**v)
|
281 |
+
self[k] = v
|
282 |
+
|
283 |
+
def keys(self):
|
284 |
+
return self.__dict__.keys()
|
285 |
+
|
286 |
+
def items(self):
|
287 |
+
return self.__dict__.items()
|
288 |
+
|
289 |
+
def values(self):
|
290 |
+
return self.__dict__.values()
|
291 |
+
|
292 |
+
def __len__(self):
|
293 |
+
return len(self.__dict__)
|
294 |
+
|
295 |
+
def __getitem__(self, key):
|
296 |
+
return getattr(self, key)
|
297 |
+
|
298 |
+
def __setitem__(self, key, value):
|
299 |
+
return setattr(self, key, value)
|
300 |
+
|
301 |
+
def __contains__(self, key):
|
302 |
+
return key in self.__dict__
|
303 |
+
|
304 |
+
def __repr__(self):
|
305 |
+
return self.__dict__.__repr__()
|