Spaces:
Running
Running
import gradio as gr | |
import requests | |
import datadog_api_client | |
from PIL import Image | |
def check_liveness(frame): | |
url = "http://127.0.0.1:8080/check_liveness" | |
file = {'file': open(frame, 'rb')} | |
r = requests.post(url=url, files=file) | |
result = r.json().get('face_state').get('result') | |
html = None | |
faces = None | |
if r.json().get('face_state').get('is_not_front') is not None: | |
liveness_score = r.json().get('face_state').get('liveness_score') | |
eye_closed = r.json().get('face_state').get('eye_closed') | |
is_boundary_face = r.json().get('face_state').get('is_boundary_face') | |
is_not_front = r.json().get('face_state').get('is_not_front') | |
is_occluded = r.json().get('face_state').get('is_occluded') | |
is_small = r.json().get('face_state').get('is_small') | |
luminance = r.json().get('face_state').get('luminance') | |
mouth_opened = r.json().get('face_state').get('mouth_opened') | |
quality = r.json().get('face_state').get('quality') | |
html = ("<table>" | |
"<tr>" | |
"<th>Face State</th>" | |
"<th>Value</th>" | |
"</tr>" | |
"<tr>" | |
"<td>Result</td>" | |
"<td>{result}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Liveness Score</td>" | |
"<td>{liveness_score}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Quality</td>" | |
"<td>{quality}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Luminance</td>" | |
"<td>{luminance}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Is Small</td>" | |
"<td>{is_small}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Is Boundary</td>" | |
"<td>{is_boundary_face}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Is Not Front</td>" | |
"<td>{is_not_front}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Face Occluded</td>" | |
"<td>{is_occluded}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Eye Closed</td>" | |
"<td>{eye_closed}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Mouth Opened</td>" | |
"<td>{mouth_opened}</td>" | |
"</tr>" | |
"</table>".format(liveness_score=liveness_score, quality=quality, luminance=luminance, is_small=is_small, is_boundary_face=is_boundary_face, | |
is_not_front=is_not_front, is_occluded=is_occluded, eye_closed=eye_closed, mouth_opened=mouth_opened, result=result)) | |
else: | |
html = ("<table>" | |
"<tr>" | |
"<th>Face State</th>" | |
"<th>Value</th>" | |
"</tr>" | |
"<tr>" | |
"<td>Result</td>" | |
"<td>{result}</td>" | |
"</tr>" | |
"</table>".format(result=result)) | |
try: | |
image = Image.open(frame) | |
for face in r.json().get('faces'): | |
x1 = face.get('x1') | |
y1 = face.get('y1') | |
x2 = face.get('x2') | |
y2 = face.get('y2') | |
if x1 < 0: | |
x1 = 0 | |
if y1 < 0: | |
y1 = 0 | |
if x2 >= image.width: | |
x2 = image.width - 1 | |
if y2 >= image.height: | |
y2 = image.height - 1 | |
face_image = image.crop((x1, y1, x2, y2)) | |
face_image_ratio = face_image.width / float(face_image.height) | |
resized_w = int(face_image_ratio * 150) | |
resized_h = 150 | |
face_image = face_image.resize((int(resized_w), int(resized_h))) | |
if faces is None: | |
faces = face_image | |
else: | |
new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80)) | |
new_image.paste(faces,(0,0)) | |
new_image.paste(face_image,(faces.width + 10, 0)) | |
faces = new_image.copy() | |
except: | |
pass | |
return [faces, html] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# KBY-AI | |
We offer SDKs for Face Recognition, Face Liveness Detection(Face Anti-Spoofing), and ID Card Recognition.<br/> | |
Besides that, we can provide several AI models and development services in machine learning. | |
## Simple Installation & Simple API | |
``` | |
sudo docker pull kbyai/face-liveness-detection:latest | |
sudo docker run -e LICENSE="xxxxx" -p 8080:8080 -p 9000:9000 kbyai/face-liveness-detection:latest | |
``` | |
## KYC Verification Demo | |
https://github.com/kby-ai/KYC-Verification | |
""" | |
) | |
with gr.TabItem("Face Liveness Detection"): | |
with gr.Row(): | |
with gr.Column(): | |
live_image_input = gr.Image(type='filepath') | |
gr.Examples(['live_examples/1.jpg', 'live_examples/2.jpg', 'live_examples/3.jpg', 'live_examples/4.jpg'], | |
inputs=live_image_input) | |
check_liveness_button = gr.Button("Check Liveness") | |
with gr.Column(): | |
liveness_face_output = gr.Image(type="pil").style(height=150) | |
livness_result_output = gr.HTML() | |
check_liveness_button.click(check_liveness, inputs=live_image_input, outputs=[liveness_face_output, livness_result_output]) | |
demo.launch(server_name="0.0.0.0", server_port=9000) |