Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config | |
import torch | |
from langchain.memory import ConversationBufferMemory | |
# Move model to device (GPU if available) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
# Load the tokenizer (same tokenizer for both models since both are GPT-2 based) | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
# Load the baseline model (pre-trained DistilGPT2) | |
baseline_model = GPT2LMHeadModel.from_pretrained("distilgpt2").to(device) | |
# Load the fine-tuned model using its configuration and state dictionary | |
# You should have a local fine-tuned model file for this (pytorch_model_100.bin) | |
fine_tuned_config = GPT2Config.from_pretrained("distilgpt2") | |
fine_tuned_model = GPT2LMHeadModel(fine_tuned_config) | |
# Load the fine-tuned weights | |
model_path = "./pytorch_model_100.bin" # Path to your fine-tuned model file | |
state_dict = torch.load(model_path, map_location=device) | |
fine_tuned_model.load_state_dict(state_dict) | |
fine_tuned_model.to(device) | |
# Set up conversational memory using LangChain's ConversationBufferMemory | |
memory = ConversationBufferMemory() | |
# Define the chatbot function with both baseline and fine-tuned models | |
def chat_with_both_models(input_text, temperature, top_p, top_k): | |
# Retrieve conversation history | |
conversation_history = memory.load_memory_variables({})['history'] | |
# Combine the conversation history with the user input (or just use input directly) | |
no_memory_input = f"Question: {input_text}\nAnswer:" | |
# Tokenize the input and convert to tensor | |
input_ids = tokenizer.encode(no_memory_input, return_tensors="pt").to(device) | |
# Generate response from baseline DistilGPT2 | |
baseline_outputs = baseline_model.generate( | |
input_ids, | |
max_length=input_ids.shape[1] + 50, | |
max_new_tokens=15, | |
num_return_sequences=1, | |
no_repeat_ngram_size=3, | |
repetition_penalty=1.2, | |
early_stopping=True, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k | |
) | |
# Decode the baseline model output | |
baseline_response = tokenizer.decode(baseline_outputs[0], skip_special_tokens=True) | |
# Generate response from the fine-tuned DistilGPT2 | |
fine_tuned_outputs = fine_tuned_model.generate( | |
input_ids, | |
max_length=input_ids.shape[1] + 50, | |
max_new_tokens=15, | |
num_return_sequences=1, | |
no_repeat_ngram_size=3, | |
repetition_penalty=1.2, | |
early_stopping=True, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k | |
) | |
# Decode the fine-tuned model output | |
fine_tuned_response = tokenizer.decode(fine_tuned_outputs[0], skip_special_tokens=True) | |
# Update the memory with the user input and responses from both models | |
memory.save_context({"input": input_text}, {"baseline_output": baseline_response, "fine_tuned_output": fine_tuned_response}) | |
# Return both responses | |
return baseline_response, fine_tuned_response | |
# Set up the Gradio interface with additional sliders | |
interface = gr.Interface( | |
fn=chat_with_both_models, | |
inputs=[ | |
gr.Textbox(label="Chat with DistilGPT-2"), # User input text | |
gr.Slider(0.1, 1.0, step=0.1, value=1.0, label="Temperature"), # Slider for temperature | |
gr.Slider(0.0, 1.0, step=0.1, value=1.0, label="Top-p"), # Slider for top-p | |
gr.Slider(1, 100, step=1, value=50, label="Top-k") # Slider for top-k | |
], | |
outputs=[ | |
gr.Textbox(label="Baseline DistilGPT-2's Response"), # Baseline model response | |
gr.Textbox(label="Fine-tuned DistilGPT-2's Response") # Fine-tuned model response | |
], | |
title="DistilGPT-2 Chatbot: Baseline vs Fine-tuned", | |
description="This app compares the responses of a baseline DistilGPT-2 and a fine-tuned version for each input prompt. You can adjust temperature, top-p, and top-k using the sliders.", | |
) | |
# Launch the Gradio app | |
interface.launch() | |