Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,18 +11,18 @@ tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
|
11 |
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
12 |
model.to(device)
|
13 |
|
14 |
-
# Load summarization model (e.g., T5-small)
|
15 |
-
summarizer_tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
16 |
-
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small").to(device)
|
17 |
|
18 |
-
def summarize_history(history):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
# Set up conversational memory using LangChain's ConversationBufferMemory
|
28 |
memory = ConversationBufferMemory()
|
@@ -32,9 +32,9 @@ def chat_with_distilgpt2(input_text):
|
|
32 |
# Retrieve conversation history
|
33 |
conversation_history = memory.load_memory_variables({})['history']
|
34 |
|
35 |
-
# Summarize if history exceeds certain length
|
36 |
-
if len(conversation_history.split()) > 200:
|
37 |
-
|
38 |
|
39 |
# Combine the (possibly summarized) history with the current user input
|
40 |
full_input = f"{conversation_history}\nUser: {input_text}\nAssistant:"
|
@@ -50,9 +50,9 @@ def chat_with_distilgpt2(input_text):
|
|
50 |
num_return_sequences=1,
|
51 |
no_repeat_ngram_size=3,
|
52 |
repetition_penalty=1.2,
|
53 |
-
temperature=0.9,
|
54 |
-
top_k=20,
|
55 |
-
top_p=0.8,
|
56 |
early_stopping=True,
|
57 |
pad_token_id=tokenizer.eos_token_id,
|
58 |
eos_token_id=tokenizer.eos_token_id
|
|
|
11 |
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
12 |
model.to(device)
|
13 |
|
14 |
+
# # Load summarization model (e.g., T5-small)
|
15 |
+
# summarizer_tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
16 |
+
# summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small").to(device)
|
17 |
|
18 |
+
# def summarize_history(history):
|
19 |
+
# input_ids = summarizer_tokenizer.encode(
|
20 |
+
# "summarize: " + history,
|
21 |
+
# return_tensors="pt"
|
22 |
+
# ).to(device)
|
23 |
+
# summary_ids = summarizer_model.generate(input_ids, max_length=50, min_length=25, length_penalty=5., num_beams=2)
|
24 |
+
# summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
25 |
+
# return summary
|
26 |
|
27 |
# Set up conversational memory using LangChain's ConversationBufferMemory
|
28 |
memory = ConversationBufferMemory()
|
|
|
32 |
# Retrieve conversation history
|
33 |
conversation_history = memory.load_memory_variables({})['history']
|
34 |
|
35 |
+
# # Summarize if history exceeds certain length
|
36 |
+
# if len(conversation_history.split()) > 200:
|
37 |
+
# conversation_history = summarize_history(conversation_history)
|
38 |
|
39 |
# Combine the (possibly summarized) history with the current user input
|
40 |
full_input = f"{conversation_history}\nUser: {input_text}\nAssistant:"
|
|
|
50 |
num_return_sequences=1,
|
51 |
no_repeat_ngram_size=3,
|
52 |
repetition_penalty=1.2,
|
53 |
+
# temperature=0.9,
|
54 |
+
# top_k=20,
|
55 |
+
# top_p=0.8,
|
56 |
early_stopping=True,
|
57 |
pad_token_id=tokenizer.eos_token_id,
|
58 |
eos_token_id=tokenizer.eos_token_id
|