import gradio as gr from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSeq2SeqLM, AutoTokenizer import torch from langchain.memory import ConversationBufferMemory # Move model to device (GPU if available) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # Load the tokenizer and model for DistilGPT-2 tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") model = GPT2LMHeadModel.from_pretrained("distilgpt2") model.to(device) # Load summarization model (e.g., T5-small) summarizer_tokenizer = AutoTokenizer.from_pretrained("t5-small") summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small").to(device) def summarize_history(history): input_ids = summarizer_tokenizer.encode( "summarize: " + history, return_tensors="pt" ).to(device) summary_ids = summarizer_model.generate(input_ids, max_length=50, min_length=25, length_penalty=5., num_beams=2) summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary # Set up conversational memory using LangChain's ConversationBufferMemory memory = ConversationBufferMemory() # Define the chatbot function with memory def chat_with_distilgpt2(input_text): # Retrieve conversation history conversation_history = memory.load_memory_variables({})['history'] # Summarize if history exceeds certain length if len(conversation_history.split()) > 200: conversation_history = summarize_history(conversation_history) # Combine the (possibly summarized) history with the current user input full_input = f"{conversation_history}\nUser: {input_text}\nAssistant:" # Tokenize the input and convert to tensor input_ids = tokenizer.encode(full_input, return_tensors="pt").to(device) # Generate the response using the model with adjusted parameters outputs = model.generate( input_ids, max_length=input_ids.shape[1] + 100, # Limit total length max_new_tokens=100, num_return_sequences=1, no_repeat_ngram_size=3, repetition_penalty=1.2, temperature=0.7, top_k=20, top_p=0.8, early_stopping=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) # Decode the model output response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update the memory with the user input and model response memory.save_context({"input": input_text}, {"output": response}) return response # Set up the Gradio interface interface = gr.Interface( fn=chat_with_distilgpt2, inputs=gr.Textbox(label="Chat with DistilGPT-2"), outputs=gr.Textbox(label="DistilGPT-2's Response"), title="DistilGPT-2 Chatbot with Memory", description="This is a simple chatbot powered by the DistilGPT-2 model with conversational memory, using LangChain.", ) # Launch the Gradio app interface.launch()