import gradio as gr from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSeq2SeqLM, AutoTokenizer, GPT2Config import torch from safetensors.torch import load_file as safetensors_load_file # Import safetensors loading function from langchain.memory import ConversationBufferMemory # Move model to device (GPU if available) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # Load the tokenizer (use pre-trained tokenizer for GPT-2 family) tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") # Load the configuration for the model (DistilGPT2 is a smaller GPT-2) config = GPT2Config.from_pretrained("distilgpt2") # Initialize the model using the configuration model = GPT2LMHeadModel(config) # Load the weights from the safetensors file model_path = "./model.safetensors" # Path to your local model file state_dict = safetensors_load_file(model_path) # Use safetensors loader model.load_state_dict(state_dict) # Load the state dict into the model # Move model to the device (GPU or CPU) model.to(device) # Set up conversational memory using LangChain's ConversationBufferMemory memory = ConversationBufferMemory() # Define the chatbot function with memory def chat_with_distilgpt2(input_text): # Retrieve conversation history conversation_history = memory.load_memory_variables({})['history'] # Combine the (possibly summarized) history with the current user input full_input = f"{conversation_history}\nUser: {input_text}\nAssistant:" # Tokenize the input and convert to tensor input_ids = tokenizer.encode(full_input, return_tensors="pt").to(device) # Generate the response using the model with adjusted parameters outputs = model.generate( input_ids, max_length=input_ids.shape[1] + 100, # Limit total length max_new_tokens=100, num_return_sequences=1, no_repeat_ngram_size=3, repetition_penalty=1.2, early_stopping=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) # Decode the model output response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update the memory with the user input and model response memory.save_context({"input": input_text}, {"output": response}) return response # Set up the Gradio interface interface = gr.Interface( fn=chat_with_distilgpt2, inputs=gr.Textbox(label="Chat with DistilGPT-2"), outputs=gr.Textbox(label="DistilGPT-2's Response"), title="DistilGPT-2 Chatbot with Memory", description="This is a simple chatbot powered by the DistilGPT-2 model with conversational memory, using LangChain.", ) # Launch the Gradio app interface.launch()