keithhon commited on
Commit
c9e87c9
1 Parent(s): d28ba32

Upload demo_cli.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. demo_cli.py +203 -0
demo_cli.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from encoder.params_model import model_embedding_size as speaker_embedding_size
2
+ from utils.argutils import print_args
3
+ from utils.modelutils import check_model_paths
4
+ from synthesizer.inference import Synthesizer
5
+ from encoder import inference as encoder
6
+ from vocoder import inference as vocoder
7
+ from pathlib import Path
8
+ import numpy as np
9
+ import soundfile as sf
10
+ import librosa
11
+ import argparse
12
+ import torch
13
+ import sys
14
+ import os
15
+ from audioread.exceptions import NoBackendError
16
+
17
+ if __name__ == '__main__':
18
+ ## Info & args
19
+ parser = argparse.ArgumentParser(
20
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
21
+ )
22
+ parser.add_argument("-e", "--enc_model_fpath", type=Path,
23
+ default="encpretrained.pt",
24
+ help="Path to a saved encoder")
25
+ parser.add_argument("-s", "--syn_model_fpath", type=Path,
26
+ default="synpretrained.pt",
27
+ help="Path to a saved synthesizer")
28
+ parser.add_argument("-v", "--voc_model_fpath", type=Path,
29
+ default="vocpretrained.pt",
30
+ help="Path to a saved vocoder")
31
+ parser.add_argument("--cpu", action="store_true", help="If True, processing is done on CPU, even when a GPU is available.")
32
+ parser.add_argument("--no_sound", action="store_true", help="If True, audio won't be played.")
33
+ parser.add_argument("--seed", type=int, default=None, help="Optional random number seed value to make toolbox deterministic.")
34
+ parser.add_argument("--no_mp3_support", action="store_true", help="If True, disallows loading mp3 files to prevent audioread errors when ffmpeg is not installed.")
35
+ parser.add_argument("-audio", "--audio_path", type=Path, required = True,
36
+ help="Path to a audio file")
37
+ parser.add_argument("--text", type=str, required = True, help="Text Input")
38
+ args = parser.parse_args()
39
+ print_args(args, parser)
40
+ if not args.no_sound:
41
+ import sounddevice as sd
42
+
43
+ if args.cpu:
44
+ # Hide GPUs from Pytorch to force CPU processing
45
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
46
+
47
+ if not args.no_mp3_support:
48
+ try:
49
+ librosa.load("samples/1320_00000.mp3")
50
+ except NoBackendError:
51
+ print("Librosa will be unable to open mp3 files if additional software is not installed.\n"
52
+ "Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.")
53
+ exit(-1)
54
+
55
+ print("Running a test of your configuration...\n")
56
+
57
+ if torch.cuda.is_available():
58
+ device_id = torch.cuda.current_device()
59
+ gpu_properties = torch.cuda.get_device_properties(device_id)
60
+ ## Print some environment information (for debugging purposes)
61
+ print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
62
+ "%.1fGb total memory.\n" %
63
+ (torch.cuda.device_count(),
64
+ device_id,
65
+ gpu_properties.name,
66
+ gpu_properties.major,
67
+ gpu_properties.minor,
68
+ gpu_properties.total_memory / 1e9))
69
+ else:
70
+ print("Using CPU for inference.\n")
71
+
72
+ ## Remind the user to download pretrained models if needed
73
+ check_model_paths(encoder_path=args.enc_model_fpath,
74
+ synthesizer_path=args.syn_model_fpath,
75
+ vocoder_path=args.voc_model_fpath)
76
+
77
+ ## Load the models one by one.
78
+ print("Preparing the encoder, the synthesizer and the vocoder...")
79
+ encoder.load_model(args.enc_model_fpath)
80
+ synthesizer = Synthesizer(args.syn_model_fpath)
81
+ vocoder.load_model(args.voc_model_fpath)
82
+
83
+
84
+ ## Run a test
85
+ # print("Testing your configuration with small inputs.")
86
+ # # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's
87
+ # # sampling rate, which may differ.
88
+ # # If you're unfamiliar with digital audio, know that it is encoded as an array of floats
89
+ # # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1.
90
+ # # The sampling rate is the number of values (samples) recorded per second, it is set to
91
+ # # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond
92
+ # # to an audio of 1 second.
93
+ # print(" Testing the encoder...")
94
+ # encoder.embed_utterance(np.zeros(encoder.sampling_rate))
95
+
96
+ # # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance
97
+ # # returns, but here we're going to make one ourselves just for the sake of showing that it's
98
+ # # possible.
99
+ # embed = np.random.rand(speaker_embedding_size)
100
+ # # Embeddings are L2-normalized (this isn't important here, but if you want to make your own
101
+ # # embeddings it will be).
102
+ # embed /= np.linalg.norm(embed)
103
+ # # The synthesizer can handle multiple inputs with batching. Let's create another embedding to
104
+ # # illustrate that
105
+ # embeds = [embed, np.zeros(speaker_embedding_size)]
106
+ # texts = ["test 1", "test 2"]
107
+ # print(" Testing the synthesizer... (loading the model will output a lot of text)")
108
+ # mels = synthesizer.synthesize_spectrograms(texts, embeds)
109
+
110
+ # # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We
111
+ # # can concatenate the mel spectrograms to a single one.
112
+ # mel = np.concatenate(mels, axis=1)
113
+ # # The vocoder can take a callback function to display the generation. More on that later. For
114
+ # # now we'll simply hide it like this:
115
+ # no_action = lambda *args: None
116
+ # print(" Testing the vocoder...")
117
+ # # For the sake of making this test short, we'll pass a short target length. The target length
118
+ # # is the length of the wav segments that are processed in parallel. E.g. for audio sampled
119
+ # # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of
120
+ # # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and
121
+ # # that has a detrimental effect on the quality of the audio. The default parameters are
122
+ # # recommended in general.
123
+ # vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action)
124
+
125
+ print("All test passed! You can now synthesize speech.\n\n")
126
+
127
+
128
+ ## Interactive speech generation
129
+ print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
130
+ "show how you can interface this project easily with your own. See the source code for "
131
+ "an explanation of what is happening.\n")
132
+
133
+ print("Interactive generation loop")
134
+ # while True:
135
+ # Get the reference audio filepath
136
+ message = "Reference voice: enter an audio filepath of a voice to be cloned (mp3, " "wav, m4a, flac, ...):\n"
137
+ in_fpath = args.audio_path
138
+
139
+ if in_fpath.suffix.lower() == ".mp3" and args.no_mp3_support:
140
+ print("Can't Use mp3 files please try again:")
141
+ ## Computing the embedding
142
+ # First, we load the wav using the function that the speaker encoder provides. This is
143
+ # important: there is preprocessing that must be applied.
144
+
145
+ # The following two methods are equivalent:
146
+ # - Directly load from the filepath:
147
+ preprocessed_wav = encoder.preprocess_wav(in_fpath)
148
+ # - If the wav is already loaded:
149
+ original_wav, sampling_rate = librosa.load(str(in_fpath))
150
+ preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)
151
+ print("Loaded file succesfully")
152
+
153
+ # Then we derive the embedding. There are many functions and parameters that the
154
+ # speaker encoder interfaces. These are mostly for in-depth research. You will typically
155
+ # only use this function (with its default parameters):
156
+ embed = encoder.embed_utterance(preprocessed_wav)
157
+ print("Created the embedding")
158
+
159
+
160
+ ## Generating the spectrogram
161
+ text = args.text
162
+
163
+ # If seed is specified, reset torch seed and force synthesizer reload
164
+ if args.seed is not None:
165
+ torch.manual_seed(args.seed)
166
+ synthesizer = Synthesizer(args.syn_model_fpath)
167
+
168
+ # The synthesizer works in batch, so you need to put your data in a list or numpy array
169
+ texts = [text]
170
+ embeds = [embed]
171
+ # If you know what the attention layer alignments are, you can retrieve them here by
172
+ # passing return_alignments=True
173
+ specs = synthesizer.synthesize_spectrograms(texts, embeds)
174
+ spec = specs[0]
175
+ print("Created the mel spectrogram")
176
+
177
+
178
+ ## Generating the waveform
179
+ print("Synthesizing the waveform:")
180
+
181
+ # If seed is specified, reset torch seed and reload vocoder
182
+ if args.seed is not None:
183
+ torch.manual_seed(args.seed)
184
+ vocoder.load_model(args.voc_model_fpath)
185
+
186
+ # Synthesizing the waveform is fairly straightforward. Remember that the longer the
187
+ # spectrogram, the more time-efficient the vocoder.
188
+ generated_wav = vocoder.infer_waveform(spec)
189
+
190
+
191
+ ## Post-generation
192
+ # There's a bug with sounddevice that makes the audio cut one second earlier, so we
193
+ # pad it.
194
+ generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant")
195
+
196
+ # Trim excess silences to compensate for gaps in spectrograms (issue #53)
197
+ generated_wav = encoder.preprocess_wav(generated_wav)
198
+
199
+ # Save it on the disk
200
+ filename = "demo_output_1.wav"
201
+ print(generated_wav.dtype)
202
+ sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate)
203
+ print("\nSaved output as %s\n\n" % filename)