File size: 6,452 Bytes
0f43f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
We provide diverse examples about fine-tuning LLMs.

Make sure to execute these commands in the `LLaMA-Factory` directory.

## Table of Contents

- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
- [Extras](#extras)

## Examples

### LoRA Fine-Tuning on A Single GPU

#### (Continuous) Pre-Training

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
```

#### Supervised Fine-Tuning

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
```

#### Multimodal Supervised Fine-Tuning

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
```

#### Reward Modeling

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
```

#### PPO Training

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
```

#### DPO/ORPO/SimPO Training

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
```

#### KTO Training

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
```

#### Preprocess Dataset

It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
```

#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
```

#### Batch Predicting and Computing BLEU and ROUGE Scores

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
```

### QLoRA Fine-Tuning on a Single GPU

#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
```

#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
```

#### Supervised Fine-Tuning with 4-bit AWQ Quantization

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
```

#### Supervised Fine-Tuning with 2-bit AQLM Quantization

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
```

### LoRA Fine-Tuning on Multiple GPUs

#### Supervised Fine-Tuning with Accelerate on Single Node

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
```

#### Supervised Fine-Tuning with Accelerate on Multiple Nodes

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
```

#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
```

### LoRA Fine-Tuning on Multiple NPUs

#### Supervised Fine-Tuning with DeepSpeed ZeRO-0

```bash
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
```

### Full-Parameter Fine-Tuning on Multiple GPUs

#### Supervised Fine-Tuning with Accelerate on Single Node

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
```

#### Supervised Fine-Tuning with Accelerate on Multiple Nodes

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
```

#### Batch Predicting and Computing BLEU and ROUGE Scores

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
```

### Merging LoRA Adapters and Quantization

#### Merge LoRA Adapters

Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```

#### Quantizing Model using AutoGPTQ

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```

### Inferring LoRA Fine-Tuned Models

Use `CUDA_VISIBLE_DEVICES=0,1` to infer models on multiple devices.

#### Use CLI

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```

#### Use Web UI

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```

#### Launch OpenAI-style API

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```

### Extras

#### Full-Parameter Fine-Tuning using GaLore

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```

#### Full-Parameter Fine-Tuning using BAdam

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```

#### LoRA+ Fine-Tuning

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```

#### Mixture-of-Depths Fine-Tuning

```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```

#### LLaMA-Pro Fine-Tuning

```bash
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```

#### FSDP+QLoRA Fine-Tuning

```bash
bash examples/extras/fsdp_qlora/single_node.sh
```