File size: 24,107 Bytes
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import openai
import json
import threading
import os
import numpy as np
from datetime import datetime
from collections import defaultdict

class TaskRegistry:
    def __init__(self):
        self.tasks = []
        # Initialize the lock
        self.lock = threading.Lock()
        objectives_file_path = "tasks/example_objectives"
        self.example_loader = ExampleObjectivesLoader(objectives_file_path)

    def load_example_objectives(self, user_objective):
        return self.example_loader.load_example_objectives(user_objective)

      
    def create_tasklist(self, objective, skill_descriptions):
        #reflect on objective
        notes = self.reflect_on_objective(objective,skill_descriptions)
        #load most relevant object and tasklist from objectives_examples.json
        example_objective, example_tasklist, example_reflection = self.load_example_objectives(objective)

        prompt = (
            f"You are an expert task list creation AI tasked with creating a  list of tasks as a JSON array, considering the ultimate objective of your team: {objective}. "
            f"Create a very short task list based on the objective, the final output of the last task will be provided back to the user. Limit tasks types to those that can be completed with the available skills listed below. Task description should be detailed.###"
            f"AVAILABLE SKILLS: {skill_descriptions}.###"
            f"RULES:"
            f"Do not use skills that are not listed."
            f"Always provide an ID to each task."
            f"Always include one skill."
            f"The final task should always output the final result of the overall objective."
            f"dependent_task_ids should always be an empty array, or an array of numbers representing the task ID it should pull results from."
            f"Make sure all task IDs are in chronological order.###\n"
            f"Helpful Notes as guidance:{notes}###\n"
            f"EXAMPLE OBJECTIVE={json.dumps(example_objective)}"
            f"TASK LIST={json.dumps(example_tasklist)}"
            f"OBJECTIVE={objective}"
            f"TASK LIST="
        )
        #print(prompt)
        print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m")
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo-16k",
            messages=[
                {
                    "role": "system",
                    "content": "You are a task creation AI."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            temperature=0,
            max_tokens=2500,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )

        # Extract the content of the assistant's response and parse it as JSON
        result = response["choices"][0]["message"]["content"]
        try:
            task_list = json.loads(result)
            #print(task_list)
            self.tasks = task_list
        except Exception as error:
            print(error)


    def reflect_on_objective(self, objective, skill_descriptions):
        #load most relevant object and tasklist from objectives_examples.json
        example_objective, example_tasklist, example_reflection = self.load_example_objectives(objective)

        prompt = (
            f"You are an Ai specializing in generating helpful thoughts and ideas on tackling an objective, and your task is to think about how to tackle this objective: {objective}. "
            f"These are the skills available to you: {skill_descriptions}.###"
            f"Think about what tools and information you need to handle this objective, and which of the available skills would be most helpful to you and writea descriptive note to pass onto a task creation AI."
            f"Consider the following example objective, tasklist, and reflection as a sample."
            f"###EXAMPLE OBJECTIVE:{example_objective}."
            f"###EXAMPLE TASKLIST:{example_tasklist}."
            f"###REFLECTION FROM EXAMPLE:{example_reflection}."
            f"###THE AI AGENT'S OBJECTIVE:{example_reflection}."
            f"###INSTRUCTION: please provide helpful notes for the task creation agent specific to this objective."
        )
        #print(prompt)
        print("\033[90m\033[3m" + "\nInitializing...\n" + "\033[0m")
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo-16k",
            messages=[
                {
                    "role": "system",
                    "content": f"You are an Ai specializing in generating helpful thoughts and ideas on tackling an objective, and your task is to think about how to tackle this objective: {objective}. "
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            temperature=0,
            max_tokens=250,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )

        # Extract the content of the assistant's response and parse it as JSON
        result = response["choices"][0]["message"]["content"]
        print(result)
        return result


    def execute_task(self, i, task, skill_registry, task_outputs, objective):
        p_nexttask="\033[92m\033[1m"+"\n*****NEXT TASK ID:"+str(task['id'])+"*****\n"+"\033[0m\033[0m"
        p_nexttask += f"\033[ EExecuting task {task.get('id')}: {task.get('task')}) [{task.get('skill')}]\033[)"
        print(p_nexttask)
        # Retrieve the skill from the registry
        skill = skill_registry.get_skill(task['skill'])
        # Get the outputs of the dependent tasks
        dependent_task_outputs = {dep: task_outputs[dep]["output"] for dep in task['dependent_task_ids']} if 'dependent_task_ids' in task else {}
        # Execute the skill
        # print("execute:"+str([task['task'], dependent_task_outputs, objective]))
        task_output = skill.execute(task['task'], dependent_task_outputs, objective)
        print("\033[93m\033[1m"+"\nTask Output (ID:"+str(task['id'])+"):"+"\033[0m\033[0m")
        print("TASK: "+str(task["task"]))
        print("OUTPUT: "+str(task_output))
        return i, task_output

  
    def reorder_tasks(self):
        self.tasks= sorted(self.tasks, key=lambda task: task['id'])


  
    def add_task(self, task, after_task_id):
        # Get the task ids
        task_ids = [t["id"] for t in self.tasks]

        # Get the index of the task id to add the new task after
        insert_index = task_ids.index(after_task_id) + 1 if after_task_id in task_ids else len(task_ids)

        # Insert the new task
        self.tasks.insert(insert_index, task)
        self.reorder_tasks()


    def get_tasks(self):
        return self.tasks

    def update_tasks(self, task_update):
        for task in self.tasks:
            if task['id'] == task_update['id']:
                task.update(task_update)
                self.reorder_tasks()


    def reflect_on_output(self, task_output, skill_descriptions):
        with self.lock:
            example = [
                [
                    {"id": 3, "task": "New task 1 description", "skill": "text_completion_skill",
                     "dependent_task_ids": [], "status": "complete"},
                    {"id": 4, "task": "New task 2 description", "skill": "text_completion_skill",
                     "dependent_task_ids": [], "status": "incomplete"}
                ],
                [2, 3],
                {"id": 5, "task": "Complete the objective and provide a final report",
                 "skill": "text_completion_skill", "dependent_task_ids": [1, 2, 3, 4], "status": "incomplete"}
            ]

            prompt = (
                f"You are an expert task manager, review the task output to decide whether any new tasks need to be added, or whether any tasks need to be updated."
                f"As you add a new task, see if there are any tasks that need to be updated (such as updating dependencies)."
                f"Use the current task list as reference."
                f"Do not add duplicate tasks to those in the current task list."
                f"Only provide JSON as your response without further comments."
                f"Every new and updated task must include all variables, even they are empty array."
                f"Dependent IDs must be smaller than the ID of the task."
                f"New tasks IDs should be no larger than the last task ID."
                f"Always select at least one skill."
                f"Task IDs should be unique and in chronological order."                f"Do not change the status of complete tasks."
                f"Only add skills from the AVAILABLE SKILLS, using the exact same spelling."
                f"Provide your array as a JSON array with double quotes. The first object is new tasks to add as a JSON array, the second array lists the ID numbers where the new tasks should be added after (number of ID numbers matches array), and the third object provides the tasks that need to be updated."
                f"Make sure to keep dependent_task_ids key, even if an empty array."
                f"AVAILABLE SKILLS: {skill_descriptions}.###"
                f"\n###Here is the last task output: {task_output}"
                f"\n###Here is the current task list: {self.tasks}"
                f"\n###EXAMPLE OUTPUT FORMAT = {json.dumps(example)}"
                f"\n###OUTPUT = "
            )
            print("\033[90m\033[3m" + "\nReflecting on task output to generate new tasks if necessary...\n" + "\033[0m")
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo-16k-0613",
                messages=[
                    {
                        "role": "system",
                        "content": "You are a task creation AI."
                    },
                    {
                        "role": "user",
                        "content": prompt
                    }
                ],
                temperature=0.7,
                max_tokens=1500,
                top_p=1,
                frequency_penalty=0,
                presence_penalty=0
            )

            # Extract the content of the assistant's response and parse it as JSON
            result = response["choices"][0]["message"]["content"]
            print("\n#" + str(result))

            # Check if the returned result has the expected structure
            if isinstance(result, str):
                try:
                    task_list = json.loads(result)
                    print("####task_list in function")
                    
                    print(task_list)
                    print("####task_list split in function")
                    print(task_list[0], task_list[1], task_list[2])
                    return task_list[0], task_list[1], task_list[2]
                except Exception as error:
                    print(error)

            else:
                raise ValueError("Invalid task list structure in the output")

    def get_tasks(self):
        """
        Returns the current list of tasks.

        Returns:
        list: the list of tasks.
        """
        return self.tasks

    def get_task(self, task_id):
        """
        Returns a task given its task_id.

        Parameters:
        task_id : int
            The unique ID of the task.

        Returns:
        dict
            The task that matches the task_id.
        """
        matching_tasks = [task for task in self.tasks if task["id"] == task_id]

        if matching_tasks:
            return matching_tasks[0]
        else:
            print(f"No task found with id {task_id}")
            return None

    def print_tasklist(self, tasks):
        p_tasklist="\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m"
        for t in tasks:
            dependent_task_ids = t.get('dependent_task_ids', [])
            dependent_task = ""
            if dependent_task_ids:
                dependent_task = f"\033[31m<dependencies: {', '.join([f'#{dep_id}' for dep_id in dependent_task_ids])}>\033[0m"
            status_color = "\033[32m" if t.get('status') == "completed" else "\033[31m"
            p_tasklist+= f"\033[1m{t.get('id')}\033[0m: {t.get('task')} {status_color}[{t.get('status')}]\033[0m \033[93m[{t.get('skill')}] {dependent_task}\033[0m\n"
        print(p_tasklist)



    def reflect_tasklist(self, objective, task_list, task_outputs, skill_descriptions):
        prompt = (
            f"You are an expert task manager. Reflect on the objective, entire task list, and the corresponding outputs to generate a better task list for the objective."
            f"Do not included 'results', and change every status to 'incomplete'."
            f"Only provide JSON as your response without further comments. "
            f"Use the current task list as reference. "
            f"Always make at least one change to the current task list "
            f"OBJECTIVE: {objective}."
            f"AVAILABLE SKILLS: {skill_descriptions}."
            f"\n###Here is the current task list: {json.dumps(task_list)}"
            f"\n###Here is the task outputs: {json.dumps(task_outputs)}"
            f"\n###IMPROVED TASKLIST = "
        )
        print("\033[90m\033[3m" + "\nReflecting on entire task list...\n" + "\033[0m")
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo-16k",
            messages=[
                {
                    "role": "system",
                    "content": "You are an AI specializing in reflecting on task lists and improving them. You will never simply return the provided task list, but always improve on it."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            temperature=0,
            max_tokens=4000,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
    
        # Extract the content of the assistant's response and parse it as JSON
        result = response["choices"][0]["message"]["content"]
        try:
            improved_task_list = json.loads(result)
            # Formatting improved_task_list to your desired format
            formatted_improved_task_list = [{
                "objective": objective,
                "examples": improved_task_list,
                "date": datetime.now().strftime("%Y-%m-%d")
            }]
            with open(f'tasks/example_objectives/improved_{datetime.now().strftime("%Y%m%d%H%M%S")}.json', 'w') as f:
                json.dump(formatted_improved_task_list, f)
            print(f"IMPROVED TASK LIST:{formatted_improved_task_list}")
        except Exception as error:
            print(error)
          
    def reflect_on_result(self, objective, task_list, task_outputs, skill_descriptions):
        prompt = (
            f"You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better."
            f"\n###OBJECTIVE: {objective}."
            f"\n###AVAILABLE SKILLS: {skill_descriptions}."
            f"\n###TASK LIST: {json.dumps(task_list)}"
            f"\n###TASK OUTPUTS: {json.dumps(task_outputs)}"
            f"\n###ANALYSIS:"
        )
        print("\033[90m\033[3m" + "\nReflecting on result...\n" + "\033[0m")
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo-16k",
            messages=[
                {
                    "role": "system",
                    "content": "You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            temperature=0,
            max_tokens=2000,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
    
        # Extract the content of the assistant's response and parse it as JSON
        result = response["choices"][0]["message"]["content"]
        try:
            print(result)
            return result
        except Exception as error:
            print(error)

  
    def reflect_on_final(self, objective, task_list, task_outputs, skill_descriptions):
        print("here!")
        system_content_result = "You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better."
        role_content_result = (
            f"You are an expert AI specializing in analyzing yourself, an autonomous agent that combines multiple LLM calls. Reflect on the objective, entire task list, and the corresponding outputs and provide an analysis of the performance of yourself and how you could have performed better."
            f"\n###OBJECTIVE: {objective}."
            f"\n###AVAILABLE SKILLS: {skill_descriptions}."
            f"\n###TASK LIST: {json.dumps(task_list)}"
            f"\n###TASK OUTPUTS: {json.dumps(task_outputs)}"
            f"\n###ANALYSIS:"
        )
        print("\033[90m\033[3m" + "\nReflecting on result...\n" + "\033[0m")
        response = self.chatcompletion(role_content_result, system_content_result,500)
        # Extract the content of the assistant's response and parse it as JSON
        simple_reflection = response["choices"][0]["message"]["content"]
        try:
            print(simple_reflection)
        except Exception as error:
            print(error)
          
        system_content_task = "You are an AI specializing in reflecting on task lists and improving them. You will never simply return the provided task list, but always improve on it."
        role_content_task = (
            f"You are an expert task manager. Reflect on the objective, entire task list, and the corresponding outputs to generate a better task list for the objective."
            f"Do not included 'results', and change every status to 'incomplete'."
            f"Only provide JSON as your response without further comments. "
            f"Use the current task list as reference. "
            f"Always make at least one change to the current task list "
            f"OBJECTIVE: {objective}."
            f"AVAILABLE SKILLS: {skill_descriptions}."
            f"SIMPLE REFLECTION: {simple_reflection}."
            f"\n###Here is the current task list: {json.dumps(task_list)}"
            f"\n###Here is the task outputs: {json.dumps(task_outputs)}"
            f"\n###IMPROVED TASKLIST = "
        )
        print("\033[90m\033[3m" + "\nReflecting on entire task list...\n" + "\033[0m")
        response = self.chatcompletion(role_content_task, system_content_task,4000)
    
        # Extract the content of the assistant's response and parse it as JSON
        result = response["choices"][0]["message"]["content"]
        print(result)
        try:
            improved_task_list = json.loads(result)
            # Formatting improved_task_list to your desired format
            formatted_improved_task_list = [{
                "objective": objective,
                "examples": improved_task_list,
                "date": datetime.now().strftime("%Y-%m-%d"),
                "reflection":simple_reflection
            }]
            with open(f'tasks/example_objectives/improved_{datetime.now().strftime("%Y%m%d%H%M%S")}.json', 'w') as f:
                json.dump(formatted_improved_task_list, f)
            print(f"IMPROVED TASK LIST:{formatted_improved_task_list}")
        except Exception as error:
            print(error)



    def chatcompletion(self, role_content, system_content, max_tokens):
      return openai.ChatCompletion.create(
          model="gpt-3.5-turbo-16k",
          messages=[
              {
                  "role": "system",
                  "content": system_content
              },
              {
                  "role": "user",
                  "content": role_content
              }
          ],
          temperature=0,
          max_tokens=max_tokens,
          top_p=1,
          frequency_penalty=0,
          presence_penalty=0
      )


from datetime import datetime

class ExampleObjectivesLoader:
    def __init__(self, objectives_folder_path, decay_factor=0.01):
        self.objectives_folder_path = objectives_folder_path
        self.decay_factor = decay_factor
        self.objectives_examples = []  # Initialize as an empty list

    def load_objectives_examples(self):
        objectives_dict = defaultdict(dict)

        for filename in os.listdir(self.objectives_folder_path):
            file_path = os.path.join(self.objectives_folder_path, filename)
            with open(file_path, 'r') as file:
                objectives = json.load(file)

                for objective in objectives:
                    key = objective['objective']
                    date = objective.get('date', None)

                    if date is not None:
                        date = datetime.strptime(date, '%Y-%m-%d')

                    if key not in objectives_dict or (date and datetime.strptime(objectives_dict[key]['date'], "%Y-%m-%d") < date):
                        objectives_dict[key] = objective

        self.objectives_examples = list(objectives_dict.values())

    def find_most_relevant_objective(self, user_input):
        user_input_embedding = self.get_embedding(user_input, model='text-embedding-ada-002')
        most_relevant_objective = max(
            self.objectives_examples,
            key=lambda pair: self.cosine_similarity(pair['objective'], user_input_embedding) * self.get_decay(pair)
        )
        return most_relevant_objective['objective'], most_relevant_objective['examples'], most_relevant_objective.get('reflection', '')

    def get_decay(self, objective):
        date = objective.get('date', None)
        if date is not None:
            date = datetime.strptime(date, '%Y-%m-%d')
            days_passed = (datetime.now() - date).days
        else:
            # if there's no date, assume a large number of days passed
            days_passed = 365 * 10  # 10 years

        decay = np.exp(-self.decay_factor * days_passed)
        return decay

    def get_embedding(self, text, model='text-embedding-ada-002'):
        response = openai.Embedding.create(input=[text], model=model)
        embedding = response['data'][0]['embedding']
        return embedding

    def cosine_similarity(self, objective, embedding):
        max_similarity = float('-inf')
        objective_embedding = self.get_embedding(objective, model='text-embedding-ada-002')
        similarity = self.calculate_similarity(objective_embedding, embedding)
        max_similarity = max(max_similarity, similarity)
        return max_similarity

    def calculate_similarity(self, embedding1, embedding2):
        embedding1 = np.array(embedding1, dtype=np.float32)
        embedding2 = np.array(embedding2, dtype=np.float32)
        similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
        return similarity

    def load_example_objectives(self, user_objective):
        self.load_objectives_examples()
        most_relevant_objective, most_relevant_tasklist, most_relevant_reflection = self.find_most_relevant_objective(user_objective)
        example_objective = most_relevant_objective
        example_tasklist = most_relevant_tasklist
        example_reflection = most_relevant_reflection
        return example_objective, example_tasklist, example_reflection