File size: 8,827 Bytes
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import { Configuration, OpenAIApi } from "openai"
import { ChromaClient, OpenAIEmbeddingFunction } from "chromadb"
import prompt from "prompt-sync"
import assert from "assert"
import * as dotenv from "dotenv"
dotenv.config()

// const client = new ChromaClient("http://localhost:8000")

// API Keys
const OPENAI_API_KEY = process.env.OPENAI_API_KEY || ""
assert(OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env")

const OPENAI_API_MODEL = process.env.OPENAI_API_MODEL || "gpt-3.5-turbo"

// Table config
const TABLE_NAME = process.env.TABLE_NAME || ""
assert(TABLE_NAME, "TABLE_NAME environment variable is missing from .env")

// Run config
const BABY_NAME = process.env.BABY_NAME || "BabyAGI"

// Goal config
const p = prompt()
const OBJECTIVE = p("What is BabyAGI's objective? ")
const INITIAL_TASK = p("What is the initial task to complete the objective? ")
assert(OBJECTIVE, "No objective provided.")
assert (INITIAL_TASK, "No initial task provided.")

console.log('\x1b[95m\x1b[1m\n*****CONFIGURATION*****\n\x1b[0m\x1b[0m')
console.log(`Name: ${BABY_NAME}`)
console.log(`LLM: ${OPENAI_API_MODEL}`)

if (OPENAI_API_MODEL.toLowerCase().includes("gpt-4")){
    console.log("\x1b[91m\x1b[1m\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****\x1b[0m\x1b[0m")
}

console.log("\x1b[94m\x1b[1m" + "\n*****OBJECTIVE*****\n" + "\x1b[0m\x1b[0m")
console.log(`${OBJECTIVE}`)

console.log(`\x1b[93m\x1b[1m \nInitial task: \x1b[0m\x1b[0m ${INITIAL_TASK}`)

// Define OpenAI embedding function using Chroma 
const embeddingFunction = new OpenAIEmbeddingFunction(OPENAI_API_KEY)

// Configure OpenAI
const configuration = new Configuration({
  apiKey: OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);

//Task List
var taskList = []

// Connect to chromadb and create/get collection
const chromaConnect = async ()=>{
    const chroma = new ChromaClient("http://localhost:8000")
    const metric = "cosine"
    const collections = await chroma.listCollections()
    const collectionNames = collections.map((c)=>c.name)
    if(collectionNames.includes(TABLE_NAME)){
        const collection = await chroma.getCollection(TABLE_NAME, embeddingFunction)
        return collection
    }
    else{
        const collection = await chroma.createCollection(
            TABLE_NAME,
            {
                "hnsw:space": metric
            }, 
            embeddingFunction
        )
        return collection
    }
}

const add_task = (task)=>{ taskList.push(task) } 

const clear_tasks = ()=>{ taskList = [] }

const get_ada_embedding = async (text)=>{
    text = text.replace("\n", " ")
    const embedding = await embeddingFunction.generate(text)
    return embedding
}

const openai_completion = async (prompt, temperature=0.5, maxTokens=100)=>{
    if(OPENAI_API_MODEL.startsWith("gpt-")){
        const messages = [{"role": "system", "content": prompt}]
        const response = await openai.createChatCompletion({
            model: OPENAI_API_MODEL,
            messages: messages,
            max_tokens: maxTokens,
            temperature: temperature,
            n: 1,
            stop: null
        })
        return response.data.choices[0].message.content.trim()
    }
    else {
        const response = await openai.createCompletion({
            model: OPENAI_API_MODEL,
            prompt: prompt,
            max_tokens: maxTokens,
            temperature: temperature,
            top_p: 1,
            frequency_penalty: 0,
            presence_penalty: 0
        })
        return response.data.choices[0].text.trim()
    }
}

const task_creation_agent = async (objective, result, task_description, taskList)=>{
    const prompt = `
        You are an task creation AI that uses the result of an execution agent to create new tasks with the following objective: ${objective}, 
        The last completed task has the result: ${result}. 
        This result was based on this task description: ${task_description}. 
        These are incomplete tasks: ${taskList.map(task=>`${task.taskId}: ${task.taskName}`).join(', ')}. 
        Based on the result, create new tasks to be completed by the AI system that do not overlap with incomplete tasks. 
        Return the tasks as an array.`
    const response = await openai_completion(prompt)
    const newTasks = response.trim().includes("\n") ? response.trim().split("\n") : [response.trim()];
    return newTasks.map(taskName => ({ taskName: taskName }));    
}



const prioritization_agent = async (taskId)=>{
    const taskNames = taskList.map((task)=>task.taskName)
    const nextTaskId = taskId+1
    const prompt = `
    You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing the following tasks: ${taskNames}. 
    Consider the ultimate objective of your team:${OBJECTIVE}. Do not remove any tasks. Return the result as a numbered list, like:
    #. First task
    #. Second task
    Start the task list with number ${nextTaskId}.`
    const response = await openai_completion(prompt)
    const newTasks = response.trim().includes("\n") ? response.trim().split("\n") : [response.trim()];
    clear_tasks()
    newTasks.forEach((newTask)=>{
        const newTaskParts = newTask.trim().split(/\.(?=\s)/)
        if (newTaskParts.length == 2){
            const newTaskId = newTaskParts[0].trim()
            const newTaskName = newTaskParts[1].trim()
            add_task({
                taskId: newTaskId, 
                taskName: newTaskName
            })
        }
    })
}

const execution_agent = async (objective, task, chromaCollection)=>{
    const context = context_agent(objective, 5, chromaCollection)
    const prompt = `
    You are an AI who performs one task based on the following objective: ${objective}.\n
    Take into account these previously completed tasks: ${context}.\n
    Your task: ${task}\nResponse:`
    const response = await openai_completion(prompt, undefined, 2000)
    return response
}

const context_agent = async (query, topResultsNum, chromaCollection)=>{
    const count = await chromaCollection.count()
    if (count == 0){
        return []
    }
    const results = await chromaCollection.query(
        undefined, 
        Math.min(topResultsNum, count), 
        undefined,
        query,
    )
    return results.metadatas[0].map(item=>item.task)
}

function sleep(ms) {
    return new Promise(resolve => setTimeout(resolve, ms))
}

(async()=>{
    const initialTask = {
        taskId: 1,
        taskName: INITIAL_TASK
    }
    add_task(initialTask)
    const chromaCollection = await chromaConnect()
    var taskIdCounter = 1
    while (true){
        if(taskList.length>0){
            console.log("\x1b[95m\x1b[1m"+"\n*****TASK LIST*****\n"+"\x1b[0m\x1b[0m")
            taskList.forEach(t => {
                console.log(" • " + t.taskName)
            })

            // Step 1: Pull the first task
            const task = taskList.shift()
            console.log("\x1b[92m\x1b[1m"+"\n*****NEXT TASK*****\n"+"\x1b[0m\x1b[0m")
            console.log(task.taskId + ": " + task.taskName)
            
            // Send to execution function to complete the task based on the context
            const result = await execution_agent(OBJECTIVE, task.taskName, chromaCollection)
            const currTaskId = task.taskId
            console.log("\x1b[93m\x1b[1m"+"\nTASK RESULT\n"+"\x1b[0m\x1b[0m")
            console.log(result)

            // Step 2: Enrich result and store in Chroma
            const enrichedResult = { data : result}  // this is where you should enrich the result if needed
            const resultId = `result_${task.taskId}`
            const vector = enrichedResult.data // extract the actual result from the dictionary
            const collectionLength =  (await chromaCollection.get([resultId])).ids?.length
            if(collectionLength>0){
                await chromaCollection.update(
                    resultId,
                    undefined,
                    {task: task.taskName, result: result},
                    vector
                )
            }
            else{
                await chromaCollection.add(
                    resultId,
                    undefined,
                    {task: task.taskName, result},
                    vector
                )
            }
            
            // Step 3: Create new tasks and reprioritize task list
            const newTasks = await task_creation_agent(OBJECTIVE, enrichedResult, task.taskName, taskList.map(task=>task.taskName))
            newTasks.forEach((task)=>{
                taskIdCounter += 1
                task.taskId = taskIdCounter
                add_task(task)
            })
            await prioritization_agent(currTaskId)
            await sleep(3000)
        }
    }
})()