Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,148 Bytes
0f43f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
from mysite.libs.utilities import chat_with_interpreter, completion, process_file,no_process_file
from interpreter import interpreter
import mysite.interpreter.interpreter_config # インポートするだけで設定が適用されます
import duckdb
#from logger import logger
def format_response(chunk, full_response):
# Message
if chunk["type"] == "message":
full_response += chunk.get("content", "")
if chunk.get("end", False):
full_response += "\n"
# Code
if chunk["type"] == "code":
if chunk.get("start", False):
full_response += "```python\n"
full_response += chunk.get("content", "").replace("`", "")
if chunk.get("end", False):
full_response += "\n```\n"
# Output
if chunk["type"] == "confirmation":
if chunk.get("start", False):
full_response += "```python\n"
full_response += chunk.get("content", {}).get("code", "")
if chunk.get("end", False):
full_response += "```\n"
# Console
if chunk["type"] == "console":
if chunk.get("start", False):
full_response += "```python\n"
if chunk.get("format", "") == "active_line":
console_content = chunk.get("content", "")
if console_content is None:
full_response += "No output available on console."
if chunk.get("format", "") == "output":
console_content = chunk.get("content", "")
full_response += console_content
if chunk.get("end", False):
full_response += "\n```\n"
# Image
if chunk["type"] == "image":
if chunk.get("start", False) or chunk.get("end", False):
full_response += "\n"
else:
image_format = chunk.get("format", "")
if image_format == "base64.png":
image_content = chunk.get("content", "")
if image_content:
image = Image.open(BytesIO(base64.b64decode(image_content)))
new_image = Image.new("RGB", image.size, "white")
new_image.paste(image, mask=image.split()[3])
buffered = BytesIO()
new_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
full_response += f"![Image](data:image/png;base64,{img_str})\n"
return full_response
import sqlite3
from datetime import datetime
# SQLiteの設定
db_name = "chat_history.db"
def initialize_db():
conn = sqlite3.connect(db_name)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
role TEXT,
type TEXT,
content TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
conn.close()
def add_message_to_db(role, message_type, content):
conn = sqlite3.connect(db_name)
cursor = conn.cursor()
cursor.execute("INSERT INTO history (role, type, content) VALUES (?, ?, ?)", (role, message_type, content))
conn.commit()
conn.close()
def get_recent_messages(limit=5):
conn = sqlite3.connect(db_name)
cursor = conn.cursor()
cursor.execute("SELECT role, type, content FROM history ORDER BY timestamp DESC LIMIT ?", (limit,))
messages = cursor.fetchall()
conn.close()
return messages[::-1] # 最新の20件を取得して逆順にする
def format_responses(chunk, full_response):
# This function will format the response from the interpreter
return full_response + chunk.get("content", "")
def chat_with_interpreter(message, history=None, a=None, b=None, c=None, d=None):
if message == "reset":
interpreter.reset()
return "Interpreter reset", history
full_response = ""
recent_messages = get_recent_messages()
for role, message_type, content in recent_messages:
entry = {"role": role, "type": message_type, "content": content}
interpreter.messages.append(entry)
user_entry = {"role": "user", "type": "message", "content": message}
interpreter.messages.append(user_entry)
add_message_to_db("user", "message", message)
for chunk in interpreter.chat(message, display=False, stream=True):
if isinstance(chunk, dict):
full_response = format_response(chunk, full_response)
else:
raise TypeError("Expected chunk to be a dictionary")
print(full_response)
yield full_response
assistant_entry = {"role": "assistant", "type": "message", "content": full_response}
interpreter.messages.append(assistant_entry)
add_message_to_db("assistant", "message", full_response)
yield full_response
return full_response, history
def chat_with_interpreter_no_stream(message, history=None, a=None, b=None, c=None, d=None):
if message == "reset":
interpreter.reset()
return "Interpreter reset", history
full_response = ""
recent_messages = get_recent_messages()
for role, message_type, content in recent_messages:
entry = {"role": role, "type": message_type, "content": content}
interpreter.messages.append(entry)
user_entry = {"role": "user", "type": "message", "content": message}
interpreter.messages.append(user_entry)
add_message_to_db("user", "message", message)
chunks = interpreter.chat(message, display=False, stream=False)
for chunk in chunks:
if isinstance(chunk, dict):
full_response = format_response(chunk, full_response)
else:
raise TypeError("Expected chunk to be a dictionary")
#yield full_response
assistant_entry = {"role": "assistant", "type": "message", "content": str(full_response)}
interpreter.messages.append(assistant_entry)
add_message_to_db("assistant", "message", str(full_response))
#yield full_response
return str(full_response), history
# 初期化
initialize_db()
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")
gradio_interfaces = gr.ChatInterface(
fn=chat_with_interpreter,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
# democs,
examples=[
["HTMLのサンプルを作成して"],
[
"CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml"
],
],
cache_examples=False,
)
if __name__ == '__main__':
message = f"""
postgres connection is this postgresql://miyataken999:yz1wPf4KrWTm@ep-odd-mode-93794521.us-east-2.aws.neon.tech/neondb?sslmode=require
create this tabale
CREATE TABLE items (
id INT PRIMARY KEY,
brand_name VARCHAR(255),
model_name VARCHAR(255),
product_number VARCHAR(255),
purchase_store VARCHAR(255),
purchase_date DATE,
purchase_price INT,
accessories TEXT,
condition INT,
metal_type VARCHAR(255),
metal_weight DECIMAL(10, 2),
diamond_certification BLOB,
initial BOOLEAN
);
"""
chat_with_interpreter(message)
|