kenken999's picture
updatest
14dc68f
raw
history blame
5.83 kB
import openai
import pinecone
import time
from collections import deque
from typing import Dict, List
#Set API Keys
OPENAI_API_KEY = ""
PINECONE_API_KEY = ""
PINECONE_ENVIRONMENT = "us-east1-gcp" #Pinecone Environment (eg. "us-east1-gcp")
#Set Variables
YOUR_TABLE_NAME = "test-table"
OBJECTIVE = "Solve world hunger."
YOUR_FIRST_TASK = "Develop a task list."
#Print OBJECTIVE
print("\033[96m\033[1m"+"\n*****OBJECTIVE*****\n"+"\033[0m\033[0m")
print(OBJECTIVE)
# Configure OpenAI and Pinecone
openai.api_key = OPENAI_API_KEY
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
# Create Pinecone index
table_name = YOUR_TABLE_NAME
dimension = 1536
metric = "cosine"
pod_type = "p1"
if table_name not in pinecone.list_indexes():
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
# Connect to the index
index = pinecone.Index(table_name)
# Task list
task_list = deque([])
def add_task(task: Dict):
task_list.append(task)
def get_ada_embedding(text):
text = text.replace("\n", " ")
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
def task_creation_agent(objective: str, result: Dict, task_description: str, task_list: List[str]):
prompt = f"You are an task creation AI that uses the result of an execution agent to create new tasks with the following objective: {objective}, The last completed task has the result: {result}. This result was based on this task description: {task_description}. These are incomplete tasks: {', '.join(task_list)}. Based on the result, create new tasks to be completed by the AI system that do not overlap with incomplete tasks. Return the tasks as an array."
response = openai.Completion.create(engine="text-davinci-003",prompt=prompt,temperature=0.5,max_tokens=100,top_p=1,frequency_penalty=0,presence_penalty=0)
new_tasks = response.choices[0].text.strip().split('\n')
return [{"task_name": task_name} for task_name in new_tasks]
def prioritization_agent(this_task_id:int):
global task_list
task_names = [t["task_name"] for t in task_list]
next_task_id = int(this_task_id)+1
prompt = f"""You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing the following tasks: {task_names}. Consider the ultimate objective of your team:{OBJECTIVE}. Do not remove any tasks. Return the result as a numbered list, like:
#. First task
#. Second task
Start the task list with number {next_task_id}."""
response = openai.Completion.create(engine="text-davinci-003",prompt=prompt,temperature=0.5,max_tokens=1000,top_p=1,frequency_penalty=0,presence_penalty=0)
new_tasks = response.choices[0].text.strip().split('\n')
task_list = deque()
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
task_list.append({"task_id": task_id, "task_name": task_name})
def execution_agent(objective:str,task: str) -> str:
#context = context_agent(index="quickstart", query="my_search_query", n=5)
context=context_agent(index=YOUR_TABLE_NAME, query=objective, n=5)
#print("\n*******RELEVANT CONTEXT******\n")
#print(context)
response = openai.Completion.create(
engine="text-davinci-003",
prompt=f"You are an AI who performs one task based on the following objective: {objective}. Your task: {task}\nResponse:",
temperature=0.7,
max_tokens=2000,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].text.strip()
def context_agent(query: str, index: str, n: int):
query_embedding = get_ada_embedding(query)
index = pinecone.Index(index_name=index)
results = index.query(query_embedding, top_k=n,
include_metadata=True)
#print("***** RESULTS *****")
#print(results)
sorted_results = sorted(results.matches, key=lambda x: x.score, reverse=True)
return [(str(item.metadata['task'])) for item in sorted_results]
# Add the first task
first_task = {
"task_id": 1,
"task_name": YOUR_FIRST_TASK
}
add_task(first_task)
# Main loop
task_id_counter = 1
while True:
if task_list:
# Print the task list
print("\033[95m\033[1m"+"\n*****TASK LIST*****\n"+"\033[0m\033[0m")
for t in task_list:
print(str(t['task_id'])+": "+t['task_name'])
# Step 1: Pull the first task
task = task_list.popleft()
print("\033[92m\033[1m"+"\n*****NEXT TASK*****\n"+"\033[0m\033[0m")
print(str(task['task_id'])+": "+task['task_name'])
# Send to execution function to complete the task based on the context
result = execution_agent(OBJECTIVE,task["task_name"])
this_task_id = int(task["task_id"])
print("\033[93m\033[1m"+"\n*****TASK RESULT*****\n"+"\033[0m\033[0m")
print(result)
# Step 2: Enrich result and store in Pinecone
enriched_result = {'data': result} # This is where you should enrich the result if needed
result_id = f"result_{task['task_id']}"
vector = enriched_result['data'] # extract the actual result from the dictionary
index.upsert([(result_id, get_ada_embedding(vector),{"task":task['task_name'],"result":result})])
# Step 3: Create new tasks and reprioritize task list
new_tasks = task_creation_agent(OBJECTIVE,enriched_result, task["task_name"], [t["task_name"] for t in task_list])
for new_task in new_tasks:
task_id_counter += 1
new_task.update({"task_id": task_id_counter})
add_task(new_task)
prioritization_agent(this_task_id)
time.sleep(1) # Sleep before checking the task list again