Spaces:
Running
on
Zero
Running
on
Zero
from platform import platform | |
from sys import version_info | |
from typing import List, Union | |
from langchain.schema import AIMessage, HumanMessage, SystemMessage | |
from gpt_engineer.core.ai import AI | |
from gpt_engineer.core.base_execution_env import BaseExecutionEnv | |
from gpt_engineer.core.base_memory import BaseMemory | |
from gpt_engineer.core.chat_to_files import chat_to_files_dict | |
from gpt_engineer.core.default.paths import CODE_GEN_LOG_FILE, ENTRYPOINT_FILE | |
from gpt_engineer.core.default.steps import curr_fn, improve_fn, setup_sys_prompt | |
from gpt_engineer.core.files_dict import FilesDict | |
from gpt_engineer.core.preprompts_holder import PrepromptsHolder | |
from gpt_engineer.core.prompt import Prompt | |
# Type hint for chat messages | |
Message = Union[AIMessage, HumanMessage, SystemMessage] | |
MAX_SELF_HEAL_ATTEMPTS = 10 | |
def get_platform_info() -> str: | |
""" | |
Returns a string containing the OS and Python version information. | |
This function is used for self-healing by providing information about the current | |
operating system and Python version. It assumes that the Python version in the | |
virtual environment is the one being used. | |
Returns: | |
str: A string containing the OS and Python version information. | |
""" | |
v = version_info | |
a = f"Python Version: {v.major}.{v.minor}.{v.micro}" | |
b = f"\nOS: {platform()}\n" | |
return a + b | |
def self_heal( | |
ai: AI, | |
execution_env: BaseExecutionEnv, | |
files_dict: FilesDict, | |
prompt: Prompt = None, | |
preprompts_holder: PrepromptsHolder = None, | |
memory: BaseMemory = None, | |
) -> FilesDict: | |
""" | |
Attempts to execute the code from the entrypoint and if it fails, sends the error output back to the AI with instructions to fix. | |
Parameters | |
---------- | |
ai : AI | |
An instance of the AI model. | |
execution_env : BaseExecutionEnv | |
The execution environment where the code is run. | |
files_dict : FilesDict | |
A dictionary of file names to their contents. | |
preprompts_holder : PrepromptsHolder, optional | |
A holder for preprompt messages. | |
Returns | |
------- | |
FilesDict | |
The updated files dictionary after self-healing attempts. | |
Raises | |
------ | |
FileNotFoundError | |
If the required entrypoint file does not exist in the code. | |
AssertionError | |
If the preprompts_holder is None. | |
Notes | |
----- | |
This code will make `MAX_SELF_HEAL_ATTEMPTS` to try and fix the code | |
before giving up. | |
This makes the assuption that the previous step was `gen_entrypoint`, | |
this code could work with `simple_gen`, or `gen_clarified_code` as well. | |
""" | |
# step 1. execute the entrypoint | |
# log_path = dbs.workspace.path / "log.txt" | |
if ENTRYPOINT_FILE not in files_dict: | |
raise FileNotFoundError( | |
"The required entrypoint " | |
+ ENTRYPOINT_FILE | |
+ " does not exist in the code." | |
) | |
attempts = 0 | |
if preprompts_holder is None: | |
raise AssertionError("Prepromptsholder required for self-heal") | |
while attempts < MAX_SELF_HEAL_ATTEMPTS: | |
attempts += 1 | |
timed_out = False | |
# Start the process | |
execution_env.upload(files_dict) | |
p = execution_env.popen(files_dict[ENTRYPOINT_FILE]) | |
# Wait for the process to complete and get output | |
stdout_full, stderr_full = p.communicate() | |
if (p.returncode != 0 and p.returncode != 2) and not timed_out: | |
print("run.sh failed. The log is:") | |
print(stdout_full.decode("utf-8")) | |
print(stderr_full.decode("utf-8")) | |
new_prompt = Prompt( | |
f"A program with this specification was requested:\n{prompt}\n, but running it produced the following output:\n{stdout_full}\n and the following errors:\n{stderr_full}. Please change it so that it fulfills the requirements." | |
) | |
files_dict = improve_fn( | |
ai, new_prompt, files_dict, memory, preprompts_holder | |
) | |
else: | |
break | |
return files_dict | |
def clarified_gen( | |
ai: AI, prompt: Prompt, memory: BaseMemory, preprompts_holder: PrepromptsHolder | |
) -> FilesDict: | |
""" | |
Generates code based on clarifications obtained from the user and saves it to a specified workspace. | |
Parameters | |
---------- | |
ai : AI | |
An instance of the AI model, responsible for processing and generating the code. | |
prompt : str | |
The user's clarification prompt. | |
memory : BaseMemory | |
The memory instance where the generated code log is saved. | |
preprompts_holder : PrepromptsHolder | |
A holder for preprompt messages. | |
Returns | |
------- | |
FilesDict | |
A dictionary of file names to their contents generated by the AI. | |
""" | |
preprompts = preprompts_holder.get_preprompts() | |
messages: List[Message] = [SystemMessage(content=preprompts["clarify"])] | |
user_input = prompt.text # clarify does not work with vision right now | |
while True: | |
messages = ai.next(messages, user_input, step_name=curr_fn()) | |
msg = messages[-1].content.strip() | |
if "nothing to clarify" in msg.lower(): | |
break | |
if msg.lower().startswith("no"): | |
print("Nothing to clarify.") | |
break | |
print('(answer in text, or "c" to move on)\n') | |
user_input = input("") | |
print() | |
if not user_input or user_input == "c": | |
print("(letting gpt-engineer make its own assumptions)") | |
print() | |
messages = ai.next( | |
messages, | |
"Make your own assumptions and state them explicitly before starting", | |
step_name=curr_fn(), | |
) | |
print() | |
user_input += """ | |
\n\n | |
Is anything else unclear? If yes, ask another question.\n | |
Otherwise state: "Nothing to clarify" | |
""" | |
print() | |
messages = [ | |
SystemMessage(content=setup_sys_prompt(preprompts)), | |
] + messages[ | |
1: | |
] # skip the first clarify message, which was the original clarify priming prompt | |
messages = ai.next( | |
messages, | |
preprompts["generate"].replace("FILE_FORMAT", preprompts["file_format"]), | |
step_name=curr_fn(), | |
) | |
print() | |
chat = messages[-1].content.strip() | |
memory.log(CODE_GEN_LOG_FILE, "\n\n".join(x.pretty_repr() for x in messages)) | |
files_dict = chat_to_files_dict(chat) | |
return files_dict | |
def lite_gen( | |
ai: AI, prompt: Prompt, memory: BaseMemory, preprompts_holder: PrepromptsHolder | |
) -> FilesDict: | |
""" | |
Executes the AI model using the main prompt and saves the generated results to the specified workspace. | |
Parameters | |
---------- | |
ai : AI | |
An instance of the AI model. | |
prompt : str | |
The main prompt to feed to the AI model. | |
memory : BaseMemory | |
The memory instance where the generated code log is saved. | |
preprompts_holder : PrepromptsHolder | |
A holder for preprompt messages. | |
Returns | |
------- | |
FilesDict | |
A dictionary of file names to their contents generated by the AI. | |
Notes | |
----- | |
The function assumes the `ai.start` method and the `to_files` utility to be correctly | |
set up and functional. Ensure these prerequisites before invoking `lite_gen`. | |
""" | |
preprompts = preprompts_holder.get_preprompts() | |
messages = ai.start( | |
prompt.to_langchain_content(), preprompts["file_format"], step_name=curr_fn() | |
) | |
chat = messages[-1].content.strip() | |
memory.log(CODE_GEN_LOG_FILE, "\n\n".join(x.pretty_repr() for x in messages)) | |
files_dict = chat_to_files_dict(chat) | |
return files_dict | |