Spaces:
Running
on
Zero
Running
on
Zero
import { Configuration, OpenAIApi } from "openai" | |
import { ChromaClient, OpenAIEmbeddingFunction } from "chromadb" | |
import prompt from "prompt-sync" | |
import assert from "assert" | |
import * as dotenv from "dotenv" | |
dotenv.config() | |
// const client = new ChromaClient("http://localhost:8000") | |
// API Keys | |
const OPENAI_API_KEY = process.env.OPENAI_API_KEY || "" | |
assert(OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env") | |
const OPENAI_API_MODEL = process.env.OPENAI_API_MODEL || "gpt-3.5-turbo" | |
// Table config | |
const TABLE_NAME = process.env.TABLE_NAME || "" | |
assert(TABLE_NAME, "TABLE_NAME environment variable is missing from .env") | |
// Run config | |
const BABY_NAME = process.env.BABY_NAME || "BabyAGI" | |
// Goal config | |
const p = prompt() | |
const OBJECTIVE = p("What is BabyAGI's objective? ") | |
const INITIAL_TASK = p("What is the initial task to complete the objective? ") | |
assert(OBJECTIVE, "No objective provided.") | |
assert (INITIAL_TASK, "No initial task provided.") | |
console.log('\x1b[95m\x1b[1m\n*****CONFIGURATION*****\n\x1b[0m\x1b[0m') | |
console.log(`Name: ${BABY_NAME}`) | |
console.log(`LLM: ${OPENAI_API_MODEL}`) | |
if (OPENAI_API_MODEL.toLowerCase().includes("gpt-4")){ | |
console.log("\x1b[91m\x1b[1m\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****\x1b[0m\x1b[0m") | |
} | |
console.log("\x1b[94m\x1b[1m" + "\n*****OBJECTIVE*****\n" + "\x1b[0m\x1b[0m") | |
console.log(`${OBJECTIVE}`) | |
console.log(`\x1b[93m\x1b[1m \nInitial task: \x1b[0m\x1b[0m ${INITIAL_TASK}`) | |
// Define OpenAI embedding function using Chroma | |
const embeddingFunction = new OpenAIEmbeddingFunction(OPENAI_API_KEY) | |
// Configure OpenAI | |
const configuration = new Configuration({ | |
apiKey: OPENAI_API_KEY, | |
}); | |
const openai = new OpenAIApi(configuration); | |
//Task List | |
var taskList = [] | |
// Connect to chromadb and create/get collection | |
const chromaConnect = async ()=>{ | |
const chroma = new ChromaClient("http://localhost:8000") | |
const metric = "cosine" | |
const collections = await chroma.listCollections() | |
const collectionNames = collections.map((c)=>c.name) | |
if(collectionNames.includes(TABLE_NAME)){ | |
const collection = await chroma.getCollection(TABLE_NAME, embeddingFunction) | |
return collection | |
} | |
else{ | |
const collection = await chroma.createCollection( | |
TABLE_NAME, | |
{ | |
"hnsw:space": metric | |
}, | |
embeddingFunction | |
) | |
return collection | |
} | |
} | |
const add_task = (task)=>{ taskList.push(task) } | |
const clear_tasks = ()=>{ taskList = [] } | |
const get_ada_embedding = async (text)=>{ | |
text = text.replace("\n", " ") | |
const embedding = await embeddingFunction.generate(text) | |
return embedding | |
} | |
const openai_completion = async (prompt, temperature=0.5, maxTokens=100)=>{ | |
if(OPENAI_API_MODEL.startsWith("gpt-")){ | |
const messages = [{"role": "system", "content": prompt}] | |
const response = await openai.createChatCompletion({ | |
model: OPENAI_API_MODEL, | |
messages: messages, | |
max_tokens: maxTokens, | |
temperature: temperature, | |
n: 1, | |
stop: null | |
}) | |
return response.data.choices[0].message.content.trim() | |
} | |
else { | |
const response = await openai.createCompletion({ | |
model: OPENAI_API_MODEL, | |
prompt: prompt, | |
max_tokens: maxTokens, | |
temperature: temperature, | |
top_p: 1, | |
frequency_penalty: 0, | |
presence_penalty: 0 | |
}) | |
return response.data.choices[0].text.trim() | |
} | |
} | |
const task_creation_agent = async (objective, result, task_description, taskList)=>{ | |
const prompt = ` | |
You are an task creation AI that uses the result of an execution agent to create new tasks with the following objective: ${objective}, | |
The last completed task has the result: ${result}. | |
This result was based on this task description: ${task_description}. | |
These are incomplete tasks: ${taskList.map(task=>`${task.taskId}: ${task.taskName}`).join(', ')}. | |
Based on the result, create new tasks to be completed by the AI system that do not overlap with incomplete tasks. | |
Return the tasks as an array.` | |
const response = await openai_completion(prompt) | |
const newTasks = response.trim().includes("\n") ? response.trim().split("\n") : [response.trim()]; | |
return newTasks.map(taskName => ({ taskName: taskName })); | |
} | |
const prioritization_agent = async (taskId)=>{ | |
const taskNames = taskList.map((task)=>task.taskName) | |
const nextTaskId = taskId+1 | |
const prompt = ` | |
You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing the following tasks: ${taskNames}. | |
Consider the ultimate objective of your team:${OBJECTIVE}. Do not remove any tasks. Return the result as a numbered list, like: | |
#. First task | |
#. Second task | |
Start the task list with number ${nextTaskId}.` | |
const response = await openai_completion(prompt) | |
const newTasks = response.trim().includes("\n") ? response.trim().split("\n") : [response.trim()]; | |
clear_tasks() | |
newTasks.forEach((newTask)=>{ | |
const newTaskParts = newTask.trim().split(/\.(?=\s)/) | |
if (newTaskParts.length == 2){ | |
const newTaskId = newTaskParts[0].trim() | |
const newTaskName = newTaskParts[1].trim() | |
add_task({ | |
taskId: newTaskId, | |
taskName: newTaskName | |
}) | |
} | |
}) | |
} | |
const execution_agent = async (objective, task, chromaCollection)=>{ | |
const context = context_agent(objective, 5, chromaCollection) | |
const prompt = ` | |
You are an AI who performs one task based on the following objective: ${objective}.\n | |
Take into account these previously completed tasks: ${context}.\n | |
Your task: ${task}\nResponse:` | |
const response = await openai_completion(prompt, undefined, 2000) | |
return response | |
} | |
const context_agent = async (query, topResultsNum, chromaCollection)=>{ | |
const count = await chromaCollection.count() | |
if (count == 0){ | |
return [] | |
} | |
const results = await chromaCollection.query( | |
undefined, | |
Math.min(topResultsNum, count), | |
undefined, | |
query, | |
) | |
return results.metadatas[0].map(item=>item.task) | |
} | |
function sleep(ms) { | |
return new Promise(resolve => setTimeout(resolve, ms)) | |
} | |
(async()=>{ | |
const initialTask = { | |
taskId: 1, | |
taskName: INITIAL_TASK | |
} | |
add_task(initialTask) | |
const chromaCollection = await chromaConnect() | |
var taskIdCounter = 1 | |
while (true){ | |
if(taskList.length>0){ | |
console.log("\x1b[95m\x1b[1m"+"\n*****TASK LIST*****\n"+"\x1b[0m\x1b[0m") | |
taskList.forEach(t => { | |
console.log(" • " + t.taskName) | |
}) | |
// Step 1: Pull the first task | |
const task = taskList.shift() | |
console.log("\x1b[92m\x1b[1m"+"\n*****NEXT TASK*****\n"+"\x1b[0m\x1b[0m") | |
console.log(task.taskId + ": " + task.taskName) | |
// Send to execution function to complete the task based on the context | |
const result = await execution_agent(OBJECTIVE, task.taskName, chromaCollection) | |
const currTaskId = task.taskId | |
console.log("\x1b[93m\x1b[1m"+"\nTASK RESULT\n"+"\x1b[0m\x1b[0m") | |
console.log(result) | |
// Step 2: Enrich result and store in Chroma | |
const enrichedResult = { data : result} // this is where you should enrich the result if needed | |
const resultId = `result_${task.taskId}` | |
const vector = enrichedResult.data // extract the actual result from the dictionary | |
const collectionLength = (await chromaCollection.get([resultId])).ids?.length | |
if(collectionLength>0){ | |
await chromaCollection.update( | |
resultId, | |
undefined, | |
{task: task.taskName, result: result}, | |
vector | |
) | |
} | |
else{ | |
await chromaCollection.add( | |
resultId, | |
undefined, | |
{task: task.taskName, result}, | |
vector | |
) | |
} | |
// Step 3: Create new tasks and reprioritize task list | |
const newTasks = await task_creation_agent(OBJECTIVE, enrichedResult, task.taskName, taskList.map(task=>task.taskName)) | |
newTasks.forEach((task)=>{ | |
taskIdCounter += 1 | |
task.taskId = taskIdCounter | |
add_task(task) | |
}) | |
await prioritization_agent(currTaskId) | |
await sleep(3000) | |
} | |
} | |
})() | |