Spaces:
Running
on
Zero
Running
on
Zero
import psycopg2 | |
from sentence_transformers import SentenceTransformer | |
from fastapi import APIRouter, HTTPException | |
class ProductDatabase: | |
def __init__(self, database_url): | |
self.database_url = database_url | |
self.conn = None | |
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def connect(self): | |
self.conn = psycopg2.connect(self.database_url) | |
def close(self): | |
if self.conn: | |
self.conn.close() | |
def setup_vector_extension_and_column(self): | |
with self.conn.cursor() as cursor: | |
# pgvector拡張機能のインストール | |
cursor.execute("CREATE EXTENSION IF NOT EXISTS vector;") | |
# ベクトルカラムの追加 | |
cursor.execute("ALTER TABLE products ADD COLUMN IF NOT EXISTS vector_col vector(384);") | |
self.conn.commit() | |
def get_embedding(self, text): | |
embedding = self.model.encode(text) | |
return embedding | |
def insert_vector(self, product_id, text): | |
vector = self.get_embedding(text).tolist() # ndarray をリストに変換 | |
with self.conn.cursor() as cursor: | |
cursor.execute("UPDATE diamondprice SET vector_col = %s WHERE id = %s", (vector, product_id)) | |
self.conn.commit() | |
def search_similar_vectors(self, query_text, top_k=50): | |
query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換 | |
with self.conn.cursor() as cursor: | |
cursor.execute(""" | |
SELECT id,price,carat, cut, color, clarity, depth, diamondprice.table, x, y, z, vector_col <=> %s::vector AS distance | |
FROM diamondprice | |
WHERE vector_col IS NOT NULL | |
ORDER BY distance asc | |
LIMIT %s; | |
""", (query_vector, top_k)) | |
results = cursor.fetchall() | |
return results | |
def search_similar_all(self, query_text, top_k=5): | |
query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換 | |
with self.conn.cursor() as cursor: | |
cursor.execute(""" | |
SELECT id,carat, cut, color, clarity, depth, diamondprice.table, x, y, z | |
FROM diamondprice | |
order by id asc | |
limit 10000000 | |
""", (query_vector, top_k)) | |
results = cursor.fetchall() | |
return results | |
def calculate(query): | |
# データベース接続情報 | |
DATABASE_URL = "postgresql://miyataken999:yz1wPf4KrWTm@ep-odd-mode-93794521.us-east-2.aws.neon.tech/neondb?sslmode=require" | |
# ProductDatabaseクラスのインスタンスを作成 | |
db = ProductDatabase(DATABASE_URL) | |
# データベースに接続 | |
db.connect() | |
try: | |
# pgvector拡張機能のインストールとカラムの追加 | |
db.setup_vector_extension_and_column() | |
print("Vector extension installed and column added successfully.") | |
query_text="1" | |
results = db.search_similar_all(query_text) | |
print("Search results:") | |
DEBUG=0 | |
if DEBUG==1: | |
for result in results: | |
print(result) | |
id = result[0] | |
sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9]) | |
print(sample_text) | |
db.insert_vector(id, sample_text) | |
#return | |
# サンプルデータの挿入 | |
#sample_text = """""" | |
#sample_product_id = 1 # 実際の製品IDを使用 | |
#db.insert_vector(sample_product_id, sample_text) | |
#db.insert_vector(2, sample_text) | |
#print(f"Vector inserted for product ID {sample_product_id}.") | |
# ベクトル検索 | |
query_text = "2.03Very GoodJSI262.058.08.068.125.05" | |
query_text = "2.03Very GoodJSI2" | |
#query | |
#query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55" | |
results = db.search_similar_vectors(query)#query_text) | |
res_all = "" | |
print("Search results:") | |
for result in results: | |
print(result) | |
res_all += str(result)+"" | |
return res_all | |
finally: | |
# 接続を閉じる | |
db.close() | |
def main(): | |
# データベース接続情報 | |
DATABASE_URL = "postgresql://miyataken999:yz1wPf4KrWTm@ep-odd-mode-93794521.us-east-2.aws.neon.tech/neondb?sslmode=require" | |
# ProductDatabaseクラスのインスタンスを作成 | |
db = ProductDatabase(DATABASE_URL) | |
# データベースに接続 | |
db.connect() | |
try: | |
# pgvector拡張機能のインストールとカラムの追加 | |
db.setup_vector_extension_and_column() | |
print("Vector extension installed and column added successfully.") | |
query_text="1" | |
results = db.search_similar_all(query_text) | |
print("Search results:") | |
DEBUG=0 | |
if DEBUG==1: | |
for result in results: | |
print(result) | |
id = result[0] | |
sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9]) | |
print(sample_text) | |
db.insert_vector(id, sample_text) | |
#return | |
# サンプルデータの挿入 | |
#sample_text = """""" | |
#sample_product_id = 1 # 実際の製品IDを使用 | |
#db.insert_vector(sample_product_id, sample_text) | |
#db.insert_vector(2, sample_text) | |
#print(f"Vector inserted for product ID {sample_product_id}.") | |
# ベクトル検索 | |
query_text = "2.03Very GoodJSI262.058.08.068.125.05" | |
query_text = "2.03Very GoodJSI2" | |
#query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55" | |
results = db.search_similar_vectors(query_text) | |
res_all = "" | |
print("Search results:") | |
for result in results: | |
print(result) | |
res_all += result+"" | |
finally: | |
# 接続を閉じる | |
db.close() | |
if __name__ == "__main__": | |
main() | |