kenken999's picture
Your commit message
b2add11
raw
history blame
17.5 kB
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Python: module math</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head><body bgcolor="#f0f0f8">
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial">&nbsp;<br><big><big><strong>math</strong></big></big></font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/usr/local/lib/python3.10/lib-dynload/math.cpython-310-x86_64-linux-gnu.so">/usr/local/lib/python3.10/lib-dynload/math.cpython-310-x86_64-linux-gnu.so</a><br><a href="https://docs.python.org/3.10/library/math.html">Module Reference</a></font></td></tr></table>
<p><tt>This&nbsp;module&nbsp;provides&nbsp;access&nbsp;to&nbsp;the&nbsp;mathematical&nbsp;functions<br>
defined&nbsp;by&nbsp;the&nbsp;C&nbsp;standard.</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#eeaa77">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Functions</strong></big></font></td></tr>
<tr><td bgcolor="#eeaa77"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><dl><dt><a name="-acos"><strong>acos</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;arc&nbsp;cosine&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;x.<br>
&nbsp;<br>
The&nbsp;result&nbsp;is&nbsp;between&nbsp;0&nbsp;and&nbsp;pi.</tt></dd></dl>
<dl><dt><a name="-acosh"><strong>acosh</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;inverse&nbsp;hyperbolic&nbsp;cosine&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-asin"><strong>asin</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;arc&nbsp;sine&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;x.<br>
&nbsp;<br>
The&nbsp;result&nbsp;is&nbsp;between&nbsp;-pi/2&nbsp;and&nbsp;pi/2.</tt></dd></dl>
<dl><dt><a name="-asinh"><strong>asinh</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;inverse&nbsp;hyperbolic&nbsp;sine&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-atan"><strong>atan</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;arc&nbsp;tangent&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;x.<br>
&nbsp;<br>
The&nbsp;result&nbsp;is&nbsp;between&nbsp;-pi/2&nbsp;and&nbsp;pi/2.</tt></dd></dl>
<dl><dt><a name="-atan2"><strong>atan2</strong></a>(y, x, /)</dt><dd><tt>Return&nbsp;the&nbsp;arc&nbsp;tangent&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;y/x.<br>
&nbsp;<br>
Unlike&nbsp;<a href="#-atan">atan</a>(y/x),&nbsp;the&nbsp;signs&nbsp;of&nbsp;both&nbsp;x&nbsp;and&nbsp;y&nbsp;are&nbsp;considered.</tt></dd></dl>
<dl><dt><a name="-atanh"><strong>atanh</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;inverse&nbsp;hyperbolic&nbsp;tangent&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-ceil"><strong>ceil</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;ceiling&nbsp;of&nbsp;x&nbsp;as&nbsp;an&nbsp;Integral.<br>
&nbsp;<br>
This&nbsp;is&nbsp;the&nbsp;smallest&nbsp;integer&nbsp;&gt;=&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-comb"><strong>comb</strong></a>(n, k, /)</dt><dd><tt>Number&nbsp;of&nbsp;ways&nbsp;to&nbsp;choose&nbsp;k&nbsp;items&nbsp;from&nbsp;n&nbsp;items&nbsp;without&nbsp;repetition&nbsp;and&nbsp;without&nbsp;order.<br>
&nbsp;<br>
Evaluates&nbsp;to&nbsp;n!&nbsp;/&nbsp;(k!&nbsp;*&nbsp;(n&nbsp;-&nbsp;k)!)&nbsp;when&nbsp;k&nbsp;&lt;=&nbsp;n&nbsp;and&nbsp;evaluates<br>
to&nbsp;zero&nbsp;when&nbsp;k&nbsp;&gt;&nbsp;n.<br>
&nbsp;<br>
Also&nbsp;called&nbsp;the&nbsp;binomial&nbsp;coefficient&nbsp;because&nbsp;it&nbsp;is&nbsp;equivalent<br>
to&nbsp;the&nbsp;coefficient&nbsp;of&nbsp;k-th&nbsp;term&nbsp;in&nbsp;polynomial&nbsp;expansion&nbsp;of&nbsp;the<br>
expression&nbsp;(1&nbsp;+&nbsp;x)**n.<br>
&nbsp;<br>
Raises&nbsp;TypeError&nbsp;if&nbsp;either&nbsp;of&nbsp;the&nbsp;arguments&nbsp;are&nbsp;not&nbsp;integers.<br>
Raises&nbsp;ValueError&nbsp;if&nbsp;either&nbsp;of&nbsp;the&nbsp;arguments&nbsp;are&nbsp;negative.</tt></dd></dl>
<dl><dt><a name="-copysign"><strong>copysign</strong></a>(x, y, /)</dt><dd><tt>Return&nbsp;a&nbsp;float&nbsp;with&nbsp;the&nbsp;magnitude&nbsp;(absolute&nbsp;value)&nbsp;of&nbsp;x&nbsp;but&nbsp;the&nbsp;sign&nbsp;of&nbsp;y.<br>
&nbsp;<br>
On&nbsp;platforms&nbsp;that&nbsp;support&nbsp;signed&nbsp;zeros,&nbsp;<a href="#-copysign">copysign</a>(1.0,&nbsp;-0.0)<br>
returns&nbsp;-1.0.</tt></dd></dl>
<dl><dt><a name="-cos"><strong>cos</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;cosine&nbsp;of&nbsp;x&nbsp;(measured&nbsp;in&nbsp;radians).</tt></dd></dl>
<dl><dt><a name="-cosh"><strong>cosh</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;hyperbolic&nbsp;cosine&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-degrees"><strong>degrees</strong></a>(x, /)</dt><dd><tt>Convert&nbsp;angle&nbsp;x&nbsp;from&nbsp;radians&nbsp;to&nbsp;degrees.</tt></dd></dl>
<dl><dt><a name="-dist"><strong>dist</strong></a>(p, q, /)</dt><dd><tt>Return&nbsp;the&nbsp;Euclidean&nbsp;distance&nbsp;between&nbsp;two&nbsp;points&nbsp;p&nbsp;and&nbsp;q.<br>
&nbsp;<br>
The&nbsp;points&nbsp;should&nbsp;be&nbsp;specified&nbsp;as&nbsp;sequences&nbsp;(or&nbsp;iterables)&nbsp;of<br>
coordinates.&nbsp;&nbsp;Both&nbsp;inputs&nbsp;must&nbsp;have&nbsp;the&nbsp;same&nbsp;dimension.<br>
&nbsp;<br>
Roughly&nbsp;equivalent&nbsp;to:<br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#-sqrt">sqrt</a>(sum((px&nbsp;-&nbsp;qx)&nbsp;**&nbsp;2.0&nbsp;for&nbsp;px,&nbsp;qx&nbsp;in&nbsp;zip(p,&nbsp;q)))</tt></dd></dl>
<dl><dt><a name="-erf"><strong>erf</strong></a>(x, /)</dt><dd><tt>Error&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-erfc"><strong>erfc</strong></a>(x, /)</dt><dd><tt>Complementary&nbsp;error&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-exp"><strong>exp</strong></a>(x, /)</dt><dd><tt>Return&nbsp;e&nbsp;raised&nbsp;to&nbsp;the&nbsp;power&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-expm1"><strong>expm1</strong></a>(x, /)</dt><dd><tt>Return&nbsp;<a href="#-exp">exp</a>(x)-1.<br>
&nbsp;<br>
This&nbsp;function&nbsp;avoids&nbsp;the&nbsp;loss&nbsp;of&nbsp;precision&nbsp;involved&nbsp;in&nbsp;the&nbsp;direct&nbsp;evaluation&nbsp;of&nbsp;<a href="#-exp">exp</a>(x)-1&nbsp;for&nbsp;small&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-fabs"><strong>fabs</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;absolute&nbsp;value&nbsp;of&nbsp;the&nbsp;float&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-factorial"><strong>factorial</strong></a>(x, /)</dt><dd><tt>Find&nbsp;x!.<br>
&nbsp;<br>
Raise&nbsp;a&nbsp;ValueError&nbsp;if&nbsp;x&nbsp;is&nbsp;negative&nbsp;or&nbsp;non-integral.</tt></dd></dl>
<dl><dt><a name="-floor"><strong>floor</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;floor&nbsp;of&nbsp;x&nbsp;as&nbsp;an&nbsp;Integral.<br>
&nbsp;<br>
This&nbsp;is&nbsp;the&nbsp;largest&nbsp;integer&nbsp;&lt;=&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-fmod"><strong>fmod</strong></a>(x, y, /)</dt><dd><tt>Return&nbsp;<a href="#-fmod">fmod</a>(x,&nbsp;y),&nbsp;according&nbsp;to&nbsp;platform&nbsp;C.<br>
&nbsp;<br>
x&nbsp;%&nbsp;y&nbsp;may&nbsp;differ.</tt></dd></dl>
<dl><dt><a name="-frexp"><strong>frexp</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;mantissa&nbsp;and&nbsp;exponent&nbsp;of&nbsp;x,&nbsp;as&nbsp;pair&nbsp;(m,&nbsp;e).<br>
&nbsp;<br>
m&nbsp;is&nbsp;a&nbsp;float&nbsp;and&nbsp;e&nbsp;is&nbsp;an&nbsp;int,&nbsp;such&nbsp;that&nbsp;x&nbsp;=&nbsp;m&nbsp;*&nbsp;2.**e.<br>
If&nbsp;x&nbsp;is&nbsp;0,&nbsp;m&nbsp;and&nbsp;e&nbsp;are&nbsp;both&nbsp;0.&nbsp;&nbsp;Else&nbsp;0.5&nbsp;&lt;=&nbsp;abs(m)&nbsp;&lt;&nbsp;1.0.</tt></dd></dl>
<dl><dt><a name="-fsum"><strong>fsum</strong></a>(seq, /)</dt><dd><tt>Return&nbsp;an&nbsp;accurate&nbsp;floating&nbsp;point&nbsp;sum&nbsp;of&nbsp;values&nbsp;in&nbsp;the&nbsp;iterable&nbsp;seq.<br>
&nbsp;<br>
Assumes&nbsp;IEEE-754&nbsp;floating&nbsp;point&nbsp;arithmetic.</tt></dd></dl>
<dl><dt><a name="-gamma"><strong>gamma</strong></a>(x, /)</dt><dd><tt>Gamma&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-gcd"><strong>gcd</strong></a>(*integers)</dt><dd><tt>Greatest&nbsp;Common&nbsp;Divisor.</tt></dd></dl>
<dl><dt><a name="-hypot"><strong>hypot</strong></a>(...)</dt><dd><tt><a href="#-hypot">hypot</a>(*coordinates)&nbsp;-&gt;&nbsp;value<br>
&nbsp;<br>
Multidimensional&nbsp;Euclidean&nbsp;distance&nbsp;from&nbsp;the&nbsp;origin&nbsp;to&nbsp;a&nbsp;point.<br>
&nbsp;<br>
Roughly&nbsp;equivalent&nbsp;to:<br>
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#-sqrt">sqrt</a>(sum(x**2&nbsp;for&nbsp;x&nbsp;in&nbsp;coordinates))<br>
&nbsp;<br>
For&nbsp;a&nbsp;two&nbsp;dimensional&nbsp;point&nbsp;(x,&nbsp;y),&nbsp;gives&nbsp;the&nbsp;hypotenuse<br>
using&nbsp;the&nbsp;Pythagorean&nbsp;theorem:&nbsp;&nbsp;<a href="#-sqrt">sqrt</a>(x*x&nbsp;+&nbsp;y*y).<br>
&nbsp;<br>
For&nbsp;example,&nbsp;the&nbsp;hypotenuse&nbsp;of&nbsp;a&nbsp;3/4/5&nbsp;right&nbsp;triangle&nbsp;is:<br>
&nbsp;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&gt;&gt;&gt;&nbsp;<a href="#-hypot">hypot</a>(3.0,&nbsp;4.0)<br>
&nbsp;&nbsp;&nbsp;&nbsp;5.0</tt></dd></dl>
<dl><dt><a name="-isclose"><strong>isclose</strong></a>(a, b, *, rel_tol=1e-09, abs_tol=0.0)</dt><dd><tt>Determine&nbsp;whether&nbsp;two&nbsp;floating&nbsp;point&nbsp;numbers&nbsp;are&nbsp;close&nbsp;in&nbsp;value.<br>
&nbsp;<br>
&nbsp;&nbsp;rel_tol<br>
&nbsp;&nbsp;&nbsp;&nbsp;maximum&nbsp;difference&nbsp;for&nbsp;being&nbsp;considered&nbsp;"close",&nbsp;relative&nbsp;to&nbsp;the<br>
&nbsp;&nbsp;&nbsp;&nbsp;magnitude&nbsp;of&nbsp;the&nbsp;input&nbsp;values<br>
&nbsp;&nbsp;abs_tol<br>
&nbsp;&nbsp;&nbsp;&nbsp;maximum&nbsp;difference&nbsp;for&nbsp;being&nbsp;considered&nbsp;"close",&nbsp;regardless&nbsp;of&nbsp;the<br>
&nbsp;&nbsp;&nbsp;&nbsp;magnitude&nbsp;of&nbsp;the&nbsp;input&nbsp;values<br>
&nbsp;<br>
Return&nbsp;True&nbsp;if&nbsp;a&nbsp;is&nbsp;close&nbsp;in&nbsp;value&nbsp;to&nbsp;b,&nbsp;and&nbsp;False&nbsp;otherwise.<br>
&nbsp;<br>
For&nbsp;the&nbsp;values&nbsp;to&nbsp;be&nbsp;considered&nbsp;close,&nbsp;the&nbsp;difference&nbsp;between&nbsp;them<br>
must&nbsp;be&nbsp;smaller&nbsp;than&nbsp;at&nbsp;least&nbsp;one&nbsp;of&nbsp;the&nbsp;tolerances.<br>
&nbsp;<br>
-inf,&nbsp;inf&nbsp;and&nbsp;NaN&nbsp;behave&nbsp;similarly&nbsp;to&nbsp;the&nbsp;IEEE&nbsp;754&nbsp;Standard.&nbsp;&nbsp;That<br>
is,&nbsp;NaN&nbsp;is&nbsp;not&nbsp;close&nbsp;to&nbsp;anything,&nbsp;even&nbsp;itself.&nbsp;&nbsp;inf&nbsp;and&nbsp;-inf&nbsp;are<br>
only&nbsp;close&nbsp;to&nbsp;themselves.</tt></dd></dl>
<dl><dt><a name="-isfinite"><strong>isfinite</strong></a>(x, /)</dt><dd><tt>Return&nbsp;True&nbsp;if&nbsp;x&nbsp;is&nbsp;neither&nbsp;an&nbsp;infinity&nbsp;nor&nbsp;a&nbsp;NaN,&nbsp;and&nbsp;False&nbsp;otherwise.</tt></dd></dl>
<dl><dt><a name="-isinf"><strong>isinf</strong></a>(x, /)</dt><dd><tt>Return&nbsp;True&nbsp;if&nbsp;x&nbsp;is&nbsp;a&nbsp;positive&nbsp;or&nbsp;negative&nbsp;infinity,&nbsp;and&nbsp;False&nbsp;otherwise.</tt></dd></dl>
<dl><dt><a name="-isnan"><strong>isnan</strong></a>(x, /)</dt><dd><tt>Return&nbsp;True&nbsp;if&nbsp;x&nbsp;is&nbsp;a&nbsp;NaN&nbsp;(not&nbsp;a&nbsp;number),&nbsp;and&nbsp;False&nbsp;otherwise.</tt></dd></dl>
<dl><dt><a name="-isqrt"><strong>isqrt</strong></a>(n, /)</dt><dd><tt>Return&nbsp;the&nbsp;integer&nbsp;part&nbsp;of&nbsp;the&nbsp;square&nbsp;root&nbsp;of&nbsp;the&nbsp;input.</tt></dd></dl>
<dl><dt><a name="-lcm"><strong>lcm</strong></a>(*integers)</dt><dd><tt>Least&nbsp;Common&nbsp;Multiple.</tt></dd></dl>
<dl><dt><a name="-ldexp"><strong>ldexp</strong></a>(x, i, /)</dt><dd><tt>Return&nbsp;x&nbsp;*&nbsp;(2**i).<br>
&nbsp;<br>
This&nbsp;is&nbsp;essentially&nbsp;the&nbsp;inverse&nbsp;of&nbsp;<a href="#-frexp">frexp</a>().</tt></dd></dl>
<dl><dt><a name="-lgamma"><strong>lgamma</strong></a>(x, /)</dt><dd><tt>Natural&nbsp;logarithm&nbsp;of&nbsp;absolute&nbsp;value&nbsp;of&nbsp;Gamma&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-log"><strong>log</strong></a>(...)</dt><dd><tt><a href="#-log">log</a>(x,&nbsp;[base=math.e])<br>
Return&nbsp;the&nbsp;logarithm&nbsp;of&nbsp;x&nbsp;to&nbsp;the&nbsp;given&nbsp;base.<br>
&nbsp;<br>
If&nbsp;the&nbsp;base&nbsp;not&nbsp;specified,&nbsp;returns&nbsp;the&nbsp;natural&nbsp;logarithm&nbsp;(base&nbsp;e)&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-log10"><strong>log10</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;base&nbsp;10&nbsp;logarithm&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-log1p"><strong>log1p</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;natural&nbsp;logarithm&nbsp;of&nbsp;1+x&nbsp;(base&nbsp;e).<br>
&nbsp;<br>
The&nbsp;result&nbsp;is&nbsp;computed&nbsp;in&nbsp;a&nbsp;way&nbsp;which&nbsp;is&nbsp;accurate&nbsp;for&nbsp;x&nbsp;near&nbsp;zero.</tt></dd></dl>
<dl><dt><a name="-log2"><strong>log2</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;base&nbsp;2&nbsp;logarithm&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-modf"><strong>modf</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;fractional&nbsp;and&nbsp;integer&nbsp;parts&nbsp;of&nbsp;x.<br>
&nbsp;<br>
Both&nbsp;results&nbsp;carry&nbsp;the&nbsp;sign&nbsp;of&nbsp;x&nbsp;and&nbsp;are&nbsp;floats.</tt></dd></dl>
<dl><dt><a name="-nextafter"><strong>nextafter</strong></a>(x, y, /)</dt><dd><tt>Return&nbsp;the&nbsp;next&nbsp;floating-point&nbsp;value&nbsp;after&nbsp;x&nbsp;towards&nbsp;y.</tt></dd></dl>
<dl><dt><a name="-perm"><strong>perm</strong></a>(n, k=None, /)</dt><dd><tt>Number&nbsp;of&nbsp;ways&nbsp;to&nbsp;choose&nbsp;k&nbsp;items&nbsp;from&nbsp;n&nbsp;items&nbsp;without&nbsp;repetition&nbsp;and&nbsp;with&nbsp;order.<br>
&nbsp;<br>
Evaluates&nbsp;to&nbsp;n!&nbsp;/&nbsp;(n&nbsp;-&nbsp;k)!&nbsp;when&nbsp;k&nbsp;&lt;=&nbsp;n&nbsp;and&nbsp;evaluates<br>
to&nbsp;zero&nbsp;when&nbsp;k&nbsp;&gt;&nbsp;n.<br>
&nbsp;<br>
If&nbsp;k&nbsp;is&nbsp;not&nbsp;specified&nbsp;or&nbsp;is&nbsp;None,&nbsp;then&nbsp;k&nbsp;defaults&nbsp;to&nbsp;n<br>
and&nbsp;the&nbsp;function&nbsp;returns&nbsp;n!.<br>
&nbsp;<br>
Raises&nbsp;TypeError&nbsp;if&nbsp;either&nbsp;of&nbsp;the&nbsp;arguments&nbsp;are&nbsp;not&nbsp;integers.<br>
Raises&nbsp;ValueError&nbsp;if&nbsp;either&nbsp;of&nbsp;the&nbsp;arguments&nbsp;are&nbsp;negative.</tt></dd></dl>
<dl><dt><a name="-pow"><strong>pow</strong></a>(x, y, /)</dt><dd><tt>Return&nbsp;x**y&nbsp;(x&nbsp;to&nbsp;the&nbsp;power&nbsp;of&nbsp;y).</tt></dd></dl>
<dl><dt><a name="-prod"><strong>prod</strong></a>(iterable, /, *, start=1)</dt><dd><tt>Calculate&nbsp;the&nbsp;product&nbsp;of&nbsp;all&nbsp;the&nbsp;elements&nbsp;in&nbsp;the&nbsp;input&nbsp;iterable.<br>
&nbsp;<br>
The&nbsp;default&nbsp;start&nbsp;value&nbsp;for&nbsp;the&nbsp;product&nbsp;is&nbsp;1.<br>
&nbsp;<br>
When&nbsp;the&nbsp;iterable&nbsp;is&nbsp;empty,&nbsp;return&nbsp;the&nbsp;start&nbsp;value.&nbsp;&nbsp;This&nbsp;function&nbsp;is<br>
intended&nbsp;specifically&nbsp;for&nbsp;use&nbsp;with&nbsp;numeric&nbsp;values&nbsp;and&nbsp;may&nbsp;reject<br>
non-numeric&nbsp;types.</tt></dd></dl>
<dl><dt><a name="-radians"><strong>radians</strong></a>(x, /)</dt><dd><tt>Convert&nbsp;angle&nbsp;x&nbsp;from&nbsp;degrees&nbsp;to&nbsp;radians.</tt></dd></dl>
<dl><dt><a name="-remainder"><strong>remainder</strong></a>(x, y, /)</dt><dd><tt>Difference&nbsp;between&nbsp;x&nbsp;and&nbsp;the&nbsp;closest&nbsp;integer&nbsp;multiple&nbsp;of&nbsp;y.<br>
&nbsp;<br>
Return&nbsp;x&nbsp;-&nbsp;n*y&nbsp;where&nbsp;n*y&nbsp;is&nbsp;the&nbsp;closest&nbsp;integer&nbsp;multiple&nbsp;of&nbsp;y.<br>
In&nbsp;the&nbsp;case&nbsp;where&nbsp;x&nbsp;is&nbsp;exactly&nbsp;halfway&nbsp;between&nbsp;two&nbsp;multiples&nbsp;of<br>
y,&nbsp;the&nbsp;nearest&nbsp;even&nbsp;value&nbsp;of&nbsp;n&nbsp;is&nbsp;used.&nbsp;The&nbsp;result&nbsp;is&nbsp;always&nbsp;exact.</tt></dd></dl>
<dl><dt><a name="-sin"><strong>sin</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;sine&nbsp;of&nbsp;x&nbsp;(measured&nbsp;in&nbsp;radians).</tt></dd></dl>
<dl><dt><a name="-sinh"><strong>sinh</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;hyperbolic&nbsp;sine&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-sqrt"><strong>sqrt</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;square&nbsp;root&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-tan"><strong>tan</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;tangent&nbsp;of&nbsp;x&nbsp;(measured&nbsp;in&nbsp;radians).</tt></dd></dl>
<dl><dt><a name="-tanh"><strong>tanh</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;hyperbolic&nbsp;tangent&nbsp;of&nbsp;x.</tt></dd></dl>
<dl><dt><a name="-trunc"><strong>trunc</strong></a>(x, /)</dt><dd><tt>Truncates&nbsp;the&nbsp;Real&nbsp;x&nbsp;to&nbsp;the&nbsp;nearest&nbsp;Integral&nbsp;toward&nbsp;0.<br>
&nbsp;<br>
Uses&nbsp;the&nbsp;__trunc__&nbsp;magic&nbsp;method.</tt></dd></dl>
<dl><dt><a name="-ulp"><strong>ulp</strong></a>(x, /)</dt><dd><tt>Return&nbsp;the&nbsp;value&nbsp;of&nbsp;the&nbsp;least&nbsp;significant&nbsp;bit&nbsp;of&nbsp;the&nbsp;float&nbsp;x.</tt></dd></dl>
</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#55aa55">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Data</strong></big></font></td></tr>
<tr><td bgcolor="#55aa55"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><strong>e</strong> = 2.718281828459045<br>
<strong>inf</strong> = inf<br>
<strong>nan</strong> = nan<br>
<strong>pi</strong> = 3.141592653589793<br>
<strong>tau</strong> = 6.283185307179586</td></tr></table>
</body></html>