# prompt: fastapi route 処理作成 引数は calat wehth state x from fastapi import APIRouter, HTTPException from babyagi.classesa import da import psycopg2 from sentence_transformers import SentenceTransformer from fastapi import APIRouter, HTTPException router = APIRouter(prefix="/leaning", tags=["leaning"]) @router.get("/route/{calat}/{wehth}/{state}/{x}") async def route(calat: float, wehth: float, state: str, x: int): result = calculate(x,y,z,c) # Validate input parameters #if not (0.0 <= calat <= 90.0): # raise HTTPException(status_code=400, detail="Invalid calat value.") # Process the request and return a response # ... return {"result": "OK"} class ProductDatabase: def __init__(self, database_url): self.database_url = database_url self.conn = None self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def connect(self): self.conn = psycopg2.connect(self.database_url) def close(self): if self.conn: self.conn.close() def setup_vector_extension_and_column(self): with self.conn.cursor() as cursor: # pgvector拡張機能のインストール cursor.execute("CREATE EXTENSION IF NOT EXISTS vector;") # ベクトルカラムの追加 cursor.execute("ALTER TABLE products ADD COLUMN IF NOT EXISTS vector_col vector(384);") self.conn.commit() def get_embedding(self, text): embedding = self.model.encode(text) return embedding def insert_vector(self, product_id, text): vector = self.get_embedding(text).tolist() # ndarray をリストに変換 with self.conn.cursor() as cursor: cursor.execute("UPDATE diamondprice SET vector_col = %s WHERE id = %s", (vector, product_id)) self.conn.commit() def search_similar_vectors(self, query_text, top_k=50): query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換 with self.conn.cursor() as cursor: cursor.execute(""" SELECT id,price,carat, cut, color, clarity, depth, diamondprice.table, x, y, z, vector_col <=> %s::vector AS distance FROM diamondprice WHERE vector_col IS NOT NULL ORDER BY distance asc LIMIT %s; """, (query_vector, top_k)) results = cursor.fetchall() return results def search_similar_all(self, query_text, top_k=5): query_vector = self.get_embedding(query_text).tolist() # ndarray をリストに変換 with self.conn.cursor() as cursor: cursor.execute(""" SELECT id,carat, cut, color, clarity, depth, diamondprice.table, x, y, z FROM diamondprice order by id asc limit 10000000 """, (query_vector, top_k)) results = cursor.fetchall() return results def calculate(query:str): # データベース接続情報 DATABASE_URL = os.getenv("postgre_url") # ProductDatabaseクラスのインスタンスを作成 db = ProductDatabase(DATABASE_URL) # データベースに接続 db.connect() try: # pgvector拡張機能のインストールとカラムの追加 db.setup_vector_extension_and_column() print("Vector extension installed and column added successfully.") query_text="1" results = db.search_similar_all(query_text) print("Search results:") DEBUG=0 if DEBUG==1: for result in results: print(result) id = result[0] sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9]) print(sample_text) db.insert_vector(id, sample_text) #return # サンプルデータの挿入 #sample_text = """""" #sample_product_id = 1 # 実際の製品IDを使用 #db.insert_vector(sample_product_id, sample_text) #db.insert_vector(2, sample_text) #print(f"Vector inserted for product ID {sample_product_id}.") # ベクトル検索 query_text = "2.03Very GoodJSI262.058.08.068.125.05" query_text = "2.03Very GoodJSI2" #query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55" results = db.search_similar_vectors(query) res_all = "" print("Search results:") for result in results: print(result) res_all += result+"" # send to chat finally: # 接続を閉じる db.close() #router = APIRouter()