import tensorflow as tf from sklearn.model_selection import train_test_split def train_model(processed_data): # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(processed_data.drop("target", axis=1), processed_data["target"], test_size=0.2, random_state=42) # Define and train model model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation="relu", input_shape=(X_train.shape[1],)), tf.keras.layers.Dense(64, activation="relu"), tf.keras.layers.Dense(1) ]) model.compile(optimizer="adam", loss="mean_squared_error") model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test)) return model