import os import shutil import hmac import hashlib import base64 import subprocess import time from mysite.logger import logger import async_timeout import asyncio import mysite.interpreter.interpreter_config GENERATION_TIMEOUT_SEC=60 def set_environment_variables(): os.environ["OPENAI_API_BASE"] = "https://api.groq.com/openai/v1" os.environ["OPENAI_API_KEY"] = "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" os.environ["MODEL_NAME"] = "llama3-8b-8192" os.environ["LOCAL_MODEL"] = "true" # Set the environment variable. def chat_with_interpreter( message, history, a=None, b=None, c=None, d=None ): # , openai_api_key): # Set the API key for the interpreter # interpreter.llm.api_key = openai_api_key if message == "reset": interpreter.reset() return "Interpreter reset", history full_response = "" # add_conversation(history,20) user_entry = {"role": "user", "type": "message", "content": message} #messages.append(user_entry) # Call interpreter.chat and capture the result messages = [] recent_messages = history[-20:] for conversation in recent_messages: user_message = conversation[0] user_entry = {"role": "user", "content": user_message} messages.append(user_entry) assistant_message = conversation[1] assistant_entry = {"role": "assistant", "content": assistant_message} messages.append(assistant_entry) user_entry = {"role": "user", "content": message} messages.append(user_entry) #system_prompt = {"role": "system", "content": "あなたは日本語の優秀なアシスタントです。"} #messages.insert(0, system_prompt) for chunk in interpreter.chat(messages, display=False, stream=True): # print(chunk) # output = '\n'.join(item['content'] for item in result if 'content' in item) full_response = format_response(chunk, full_response) yield full_response # chunk.get("content", "") yield full_response + rows # , history return full_response, history async def completion(message: str, history, c=None, d=None): from groq import Groq client = Groq(api_key=os.getenv("api_key")) messages = [] recent_messages = history[-20:] for conversation in recent_messages: user_message = conversation[0] user_entry = {"role": "user", "content": user_message} messages.append(user_entry) assistant_message = conversation[1] assistant_entry = {"role": "assistant", "content": assistant_message} messages.append(assistant_entry) user_entry = {"role": "user", "content": message} messages.append(user_entry) system_prompt = {"role": "system", "content": "あなたは日本語の優秀なアシスタントです。"} messages.insert(0, system_prompt) async with async_timeout.timeout(GENERATION_TIMEOUT_SEC): try: stream = client.chat.completions.create( model="llama3-8b-8192", messages=messages, temperature=1, max_tokens=1024, top_p=1, stream=True, stop=None, ) all_result = "" for chunk in stream: current_content = chunk.choices[0].delta.content or "" all_result += current_content yield current_content yield all_result #return all_result except asyncio.TimeoutError: raise HTTPException(status_code=504, detail="Stream timed out")