File size: 17,483 Bytes
6041051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53bc87
 
 
 
 
6041051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53bc87
 
 
 
 
6041051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53bc87
 
 
 
 
6041051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d998065
 
 
 
6041051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44092b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6041051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os, tempfile, qdrant_client
import streamlit as st
from llama_index.llms import OpenAI, Gemini, Cohere
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex, StorageContext
from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter
from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser
from llama_index.vector_stores import QdrantVectorStore, PineconeVectorStore
from pinecone import Pinecone


def reset_pipeline_generated():
    if 'pipeline_generated' in st.session_state:
        st.session_state['pipeline_generated'] = False

def upload_file():
    file = st.file_uploader("Upload a file", on_change=reset_pipeline_generated)
    if file is not None:
        file_path = save_uploaded_file(file)
        
        if file_path:
            loaded_file = SimpleDirectoryReader(input_files=[file_path]).load_data()
            print(f"Total documents: {len(loaded_file)}")

            st.success(f"File uploaded successfully. Total documents loaded: {len(loaded_file)}")
            #print(loaded_file)
        return loaded_file
    return None

@st.cache_data
def save_uploaded_file(uploaded_file):
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
            tmp_file.write(uploaded_file.getvalue())
            return tmp_file.name
    except Exception as e:
        st.error(f"Error saving file: {e}")
        return None


def select_llm():
    st.header("Choose LLM")
    llm_choice = st.selectbox("Select LLM", ["Gemini", "Cohere", "GPT-3.5", "GPT-4"], on_change=reset_pipeline_generated)
    
    if llm_choice == "GPT-3.5":
        llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo-1106")
        st.write(f"{llm_choice} selected")
    elif llm_choice == "GPT-4":
        llm = OpenAI(temperature=0.1, model="gpt-4-1106-preview")
        st.write(f"{llm_choice} selected")
    elif llm_choice == "Gemini":
        llm = Gemini(model="models/gemini-pro")
        st.write(f"{llm_choice} selected")
    elif llm_choice == "Cohere":
        llm = Cohere(model="command", api_key=os.environ['COHERE_API_TOKEN'])
        st.write(f"{llm_choice} selected")
    return llm, llm_choice

def select_embedding_model():
    st.header("Choose Embedding Model")
    col1, col2 = st.columns([2,1])
    with col2:
        st.markdown("""
                    [Embedding Models Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
                    """)
    model_names = [
        "BAAI/bge-small-en-v1.5",
        "WhereIsAI/UAE-Large-V1",
        "BAAI/bge-large-en-v1.5",
        "khoa-klaytn/bge-small-en-v1.5-angle",
        "BAAI/bge-base-en-v1.5",
        "llmrails/ember-v1",
        "jamesgpt1/sf_model_e5",
        "thenlper/gte-large",
        "infgrad/stella-base-en-v2",
        "thenlper/gte-base"
    ]
    selected_model = st.selectbox("Select Embedding Model", model_names,  on_change=reset_pipeline_generated)
    with st.spinner("Please wait") as status:
        embed_model = HuggingFaceEmbedding(model_name=selected_model)
        st.session_state['embed_model'] = embed_model
        st.markdown(F"Embedding Model: {embed_model.model_name}")
        st.markdown(F"Embed Batch Size: {embed_model.embed_batch_size}")
        st.markdown(F"Embed Batch Size: {embed_model.max_length}")


    return embed_model, selected_model

def select_node_parser():
    st.header("Choose Node Parser")
    col1, col2 = st.columns([4,1])
    with col2:
        st.markdown("""
                    [More Information](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/root.html)
                    """)
    parser_types = ["SentenceSplitter", "CodeSplitter", "SemanticSplitterNodeParser",
                    "TokenTextSplitter", "HTMLNodeParser", "JSONNodeParser", "MarkdownNodeParser"]
    parser_type = st.selectbox("Select Node Parser", parser_types, on_change=reset_pipeline_generated)
    
    parser_params = {}
    if parser_type == "HTMLNodeParser":
        tags = st.text_input("Enter tags separated by commas", "p, h1")
        tag_list = tags.split(',')
        parser = HTMLNodeParser(tags=tag_list)
        parser_params = {'tags': tag_list}
        
    elif parser_type == "JSONNodeParser":
        parser = JSONNodeParser()
        
    elif parser_type == "MarkdownNodeParser":
        parser = MarkdownNodeParser()
        
    elif parser_type == "CodeSplitter":
        language = st.text_input("Language", "python")
        chunk_lines = st.number_input("Chunk Lines", min_value=1, value=40)
        chunk_lines_overlap = st.number_input("Chunk Lines Overlap", min_value=0, value=15)
        max_chars = st.number_input("Max Chars", min_value=1, value=1500)
        parser = CodeSplitter(language=language, chunk_lines=chunk_lines, chunk_lines_overlap=chunk_lines_overlap, max_chars=max_chars)
        parser_params = {'language': language, 'chunk_lines': chunk_lines, 'chunk_lines_overlap': chunk_lines_overlap, 'max_chars': max_chars}
        
    elif parser_type == "SentenceSplitter":
        chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
        chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
        parser = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
        parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
        
    elif parser_type == "SemanticSplitterNodeParser":
        if 'embed_model' not in st.session_state:
            st.warning("Please select an embedding model first.")
            return None, None
        
        embed_model = st.session_state['embed_model']
        buffer_size = st.number_input("Buffer Size", min_value=1, value=1)
        breakpoint_percentile_threshold = st.number_input("Breakpoint Percentile Threshold", min_value=0, max_value=100, value=95)
        parser = SemanticSplitterNodeParser(buffer_size=buffer_size, breakpoint_percentile_threshold=breakpoint_percentile_threshold, embed_model=embed_model)
        parser_params = {'buffer_size': buffer_size, 'breakpoint_percentile_threshold': breakpoint_percentile_threshold}
        
    elif parser_type == "TokenTextSplitter":
        chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
        chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
        parser = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
        parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}

    # Save the parser type and parameters to the session state
    st.session_state['node_parser_type'] = parser_type
    st.session_state['node_parser_params'] = parser_params
    
    return parser, parser_type


def select_response_synthesis_method():
    st.header("Choose Response Synthesis Method")
    col1, col2 = st.columns([4,1])
    with col2:
        st.markdown("""
                    [More Information](https://docs.llamaindex.ai/en/stable/module_guides/querying/response_synthesizers/response_synthesizers.html)
                    """)
    response_modes = [
        "refine",
        "tree_summarize",  
        "compact", 
        "simple_summarize", 
        "accumulate", 
        "compact_accumulate"
    ]
    selected_mode = st.selectbox("Select Response Mode", response_modes, on_change=reset_pipeline_generated)
    response_mode = selected_mode
    return response_mode, selected_mode

def select_vector_store():
    st.header("Choose Vector Store")
    vector_stores = ["Simple", "Pinecone", "Qdrant"]
    selected_store = st.selectbox("Select Vector Store", vector_stores, on_change=reset_pipeline_generated)

    vector_store = None

    if selected_store == "Pinecone":
        pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
        index = pc.Index("test")
        vector_store = PineconeVectorStore(pinecone_index=index)


    elif selected_store == "Qdrant":
        client = qdrant_client.QdrantClient(location=":memory:")
        vector_store = QdrantVectorStore(client=client, collection_name="sampledata")
    st.write(selected_store)
    return vector_store, selected_store

def generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store):
    if vector_store is not None:
        # Set storage context if vector_store is not None
        storage_context = StorageContext.from_defaults(vector_store=vector_store)
    else:
        storage_context = None

    # Create the service context
    service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)

    # Create the vector index
    vector_index = VectorStoreIndex.from_documents(documents=file, storage_context=storage_context, service_context=service_context, show_progress=True)
    if storage_context:
        vector_index.storage_context.persist(persist_dir="persist_dir")

    # Create the query engine
    query_engine = vector_index.as_query_engine(
        response_mode=response_mode,
        verbose=True,
    )

    return query_engine

def send_query():
    query = st.session_state['query']
    response = f"Response for the query: {query}"
    st.markdown(response)

def generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode, vector_store_choice):
    node_parser_params = st.session_state.get('node_parser_params', {})
    print(node_parser_params)
    code_snippet = "from llama_index.llms import OpenAI, Gemini, Cohere\n"
    code_snippet += "from llama_index.embeddings import HuggingFaceEmbedding\n"
    code_snippet += "from llama_index import ServiceContext, VectorStoreIndex, StorageContext\n"
    code_snippet += "from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter\n"
    code_snippet += "from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser\n"
    code_snippet += "from llama_index.vector_stores import MilvusVectorStore, QdrantVectorStore\n"
    code_snippet += "import qdrant_client\n\n"

    # LLM initialization
    if llm_choice == "GPT-3.5":
        code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-3.5-turbo-1106')\n"
    elif llm_choice == "GPT-4":
        code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-4-1106-preview')\n"
    elif llm_choice == "Gemini":
        code_snippet += "llm = Gemini(model='models/gemini-pro')\n"
    elif llm_choice == "Cohere":
        code_snippet += "llm = Cohere(model='command', api_key='<YOUR_API_KEY>')  # Replace <YOUR_API_KEY> with your actual API key\n"

    # Embedding model initialization
    code_snippet += f"embed_model = HuggingFaceEmbedding(model_name='{embed_model_choice}')\n\n"

    # Node parser initialization
    node_parsers = {
        "SentenceSplitter": f"SentenceSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
        "CodeSplitter": f"CodeSplitter(language={node_parser_params.get('language', 'python')}, chunk_lines={node_parser_params.get('chunk_lines', 40)}, chunk_lines_overlap={node_parser_params.get('chunk_lines_overlap', 15)}, max_chars={node_parser_params.get('max_chars', 1500)})",
        "SemanticSplitterNodeParser": f"SemanticSplitterNodeParser(buffer_size={node_parser_params.get('buffer_size', 1)}, breakpoint_percentile_threshold={node_parser_params.get('breakpoint_percentile_threshold', 95)}, embed_model=embed_model)",
        "TokenTextSplitter": f"TokenTextSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
        "HTMLNodeParser": f"HTMLNodeParser(tags={node_parser_params.get('tags', ['p', 'h1'])})",  
        "JSONNodeParser": "JSONNodeParser()",
        "MarkdownNodeParser": "MarkdownNodeParser()"
    }
    code_snippet += f"node_parser = {node_parsers[node_parser_choice]}\n\n"

    # Response mode
    code_snippet += f"response_mode = '{response_mode}'\n\n"

    # Vector store initialization
    if vector_store_choice == "Pinecone":
        code_snippet += "pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])\n"
        code_snippet += "index = pc.Index('test')\n"
        code_snippet += "vector_store = PineconeVectorStore(pinecone_index=index)\n"
    elif vector_store_choice == "Qdrant":
        code_snippet += "client = qdrant_client.QdrantClient(location=':memory:')\n"
        code_snippet += "vector_store = QdrantVectorStore(client=client, collection_name='sampledata')\n"
    elif vector_store_choice == "Simple":
        code_snippet += "vector_store = None  # Simple in-memory vector store selected\n"

    code_snippet += "\n# Finalizing the RAG pipeline setup\n"
    code_snippet += "if vector_store is not None:\n"
    code_snippet += "    storage_context = StorageContext.from_defaults(vector_store=vector_store)\n"
    code_snippet += "else:\n"
    code_snippet += "    storage_context = None\n\n"

    code_snippet += "service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)\n\n"

    code_snippet += "_file = 'path_to_your_file'  # Replace with the path to your file\n"
    code_snippet += "vector_index = VectorStoreIndex.from_documents(documents=_file, storage_context=storage_context, service_context=service_context, show_progress=True)\n"
    code_snippet += "if storage_context:\n"
    code_snippet += "    vector_index.storage_context.persist(persist_dir='persist_dir')\n\n"

    code_snippet += "query_engine = vector_index.as_query_engine(response_mode=response_mode, verbose=True)\n"

    return code_snippet

def main():
    st.title("RAGArch: RAG Pipeline Tester and Code Generator")
    st.markdown("""
    - **Configure and Test RAG Pipelines with Custom Parameters**
    - **Automatically Generate Plug-and-Play Implementation Code Based on Your Configuration**
    """)

    # Sidebar Intro
    st.sidebar.markdown('## App Created By')
    st.sidebar.markdown("""
    Harshad Suryawanshi: 
    [Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/), [Medium](https://harshadsuryawanshi.medium.com/), [X](https://twitter.com/HarshadSurya1c)
    """)
    st.sidebar.markdown('## Other Projects')
    st.sidebar.markdown("""
    - [C3 Voice Assistant - Making LLM/RAG Apps Accessible to Everyone](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-gpt3-activity-7149796976442740736-1lXj?utm_source=share&utm_medium=member_desktop)
    - [NA2SQL - Extracting Insights from Databases using Natural Language](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-streamlit-activity-7141801596006440960-mCjT)
    - [Pokemon Go! Inspired AInimal GO! - Multimodal RAG App](https://www.linkedin.com/posts/harshadsuryawanshi_llamaindex-ai-deeplearning-activity-7134632983495327744-M7yy)
    - [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP)
    - [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
    - [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
    - [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
    """)
    
    st.sidebar.markdown('## Disclaimer')
    st.sidebar.markdown("""This application is for demonstration purposes only and may not cover all aspects of real-world data complexities. Please use it as a guide and not as a definitive source for decision-making.""")
    

    # Upload file
    file = upload_file()

    # Select RAG components
    llm, llm_choice = select_llm()
    embed_model, embed_model_choice = select_embedding_model()


    node_parser, node_parser_choice = select_node_parser()
    # Process nodes only if a file has been uploaded
    if file is not None:
        if node_parser:
            nodes = node_parser.get_nodes_from_documents(file)
            st.write("First node: ")
            st.code(f"{nodes[0].text}")

    response_mode, response_mode_choice = select_response_synthesis_method()
    vector_store, vector_store_choice = select_vector_store()

    # Generate RAG Pipeline Button
    if file is not None:
        if st.button("Generate RAG Pipeline"):
            with st.spinner():
                query_engine = generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store)
                st.session_state['query_engine'] = query_engine
                st.session_state['pipeline_generated'] = True
                st.success("RAG Pipeline Generated Successfully!")
    elif file is None:
        st.error('Please upload a file')


    # After generating the RAG pipeline
    if st.session_state.get('pipeline_generated', False):
        query = st.text_input("Enter your query", key='query')
        if st.button("Send"):
            if 'query_engine' in st.session_state:
                response = st.session_state['query_engine'].query(query)
                st.markdown(response, unsafe_allow_html=True)
            else:
                st.error("Query engine not initialized. Please generate the RAG pipeline first.")
  
    if file and st.button("Generate Code Snippet"):
        code_snippet = generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode_choice, vector_store_choice)
        st.code(code_snippet, language='python')

if __name__ == "__main__":
    main()