Spaces:
Sleeping
Sleeping
import os, tempfile, qdrant_client | |
import streamlit as st | |
from llama_index.llms import OpenAI, Gemini, Cohere | |
from llama_index.embeddings import HuggingFaceEmbedding | |
from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex, StorageContext | |
from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter | |
from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser | |
from llama_index.vector_stores import QdrantVectorStore, PineconeVectorStore | |
from pinecone import Pinecone | |
def reset_pipeline_generated(): | |
if 'pipeline_generated' in st.session_state: | |
st.session_state['pipeline_generated'] = False | |
def upload_file(): | |
file = st.file_uploader("Upload a file", on_change=reset_pipeline_generated) | |
if file is not None: | |
file_path = save_uploaded_file(file) | |
if file_path: | |
loaded_file = SimpleDirectoryReader(input_files=[file_path]).load_data() | |
print(f"Total documents: {len(loaded_file)}") | |
st.success(f"File uploaded successfully. Total documents loaded: {len(loaded_file)}") | |
#print(loaded_file) | |
return loaded_file | |
return None | |
def save_uploaded_file(uploaded_file): | |
try: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file: | |
tmp_file.write(uploaded_file.getvalue()) | |
return tmp_file.name | |
except Exception as e: | |
st.error(f"Error saving file: {e}") | |
return None | |
def select_llm(): | |
st.header("Choose LLM") | |
llm_choice = st.selectbox("Select LLM", ["Gemini", "Cohere", "GPT-3.5", "GPT-4"], on_change=reset_pipeline_generated) | |
if llm_choice == "GPT-3.5": | |
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo-1106") | |
st.write(f"{llm_choice} selected") | |
elif llm_choice == "GPT-4": | |
llm = OpenAI(temperature=0.1, model="gpt-4-1106-preview") | |
st.write(f"{llm_choice} selected") | |
elif llm_choice == "Gemini": | |
llm = Gemini(model="models/gemini-pro") | |
st.write(f"{llm_choice} selected") | |
elif llm_choice == "Cohere": | |
llm = Cohere(model="command", api_key=os.environ['COHERE_API_TOKEN']) | |
st.write(f"{llm_choice} selected") | |
return llm, llm_choice | |
def select_embedding_model(): | |
st.header("Choose Embedding Model") | |
model_names = [ | |
"BAAI/bge-small-en-v1.5", | |
"WhereIsAI/UAE-Large-V1", | |
"BAAI/bge-large-en-v1.5", | |
"khoa-klaytn/bge-small-en-v1.5-angle", | |
"BAAI/bge-base-en-v1.5", | |
"llmrails/ember-v1", | |
"jamesgpt1/sf_model_e5", | |
"thenlper/gte-large", | |
"infgrad/stella-base-en-v2", | |
"thenlper/gte-base" | |
] | |
selected_model = st.selectbox("Select Embedding Model", model_names, on_change=reset_pipeline_generated) | |
with st.spinner("Please wait") as status: | |
embed_model = HuggingFaceEmbedding(model_name=selected_model) | |
st.session_state['embed_model'] = embed_model | |
st.markdown(F"Embedding Model: {embed_model.model_name}") | |
st.markdown(F"Embed Batch Size: {embed_model.embed_batch_size}") | |
st.markdown(F"Embed Batch Size: {embed_model.max_length}") | |
return embed_model, selected_model | |
def select_node_parser(): | |
st.header("Choose Node Parser") | |
parser_types = ["SentenceSplitter", "CodeSplitter", "SemanticSplitterNodeParser", | |
"TokenTextSplitter", "HTMLNodeParser", "JSONNodeParser", "MarkdownNodeParser"] | |
parser_type = st.selectbox("Select Node Parser", parser_types, on_change=reset_pipeline_generated) | |
parser_params = {} | |
if parser_type == "HTMLNodeParser": | |
tags = st.text_input("Enter tags separated by commas", "p, h1") | |
tag_list = tags.split(',') | |
parser = HTMLNodeParser(tags=tag_list) | |
parser_params = {'tags': tag_list} | |
elif parser_type == "JSONNodeParser": | |
parser = JSONNodeParser() | |
elif parser_type == "MarkdownNodeParser": | |
parser = MarkdownNodeParser() | |
elif parser_type == "CodeSplitter": | |
language = st.text_input("Language", "python") | |
chunk_lines = st.number_input("Chunk Lines", min_value=1, value=40) | |
chunk_lines_overlap = st.number_input("Chunk Lines Overlap", min_value=0, value=15) | |
max_chars = st.number_input("Max Chars", min_value=1, value=1500) | |
parser = CodeSplitter(language=language, chunk_lines=chunk_lines, chunk_lines_overlap=chunk_lines_overlap, max_chars=max_chars) | |
parser_params = {'language': language, 'chunk_lines': chunk_lines, 'chunk_lines_overlap': chunk_lines_overlap, 'max_chars': max_chars} | |
elif parser_type == "SentenceSplitter": | |
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024) | |
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20) | |
parser = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap} | |
elif parser_type == "SemanticSplitterNodeParser": | |
if 'embed_model' not in st.session_state: | |
st.warning("Please select an embedding model first.") | |
return None, None | |
embed_model = st.session_state['embed_model'] | |
buffer_size = st.number_input("Buffer Size", min_value=1, value=1) | |
breakpoint_percentile_threshold = st.number_input("Breakpoint Percentile Threshold", min_value=0, max_value=100, value=95) | |
parser = SemanticSplitterNodeParser(buffer_size=buffer_size, breakpoint_percentile_threshold=breakpoint_percentile_threshold, embed_model=embed_model) | |
parser_params = {'buffer_size': buffer_size, 'breakpoint_percentile_threshold': breakpoint_percentile_threshold} | |
elif parser_type == "TokenTextSplitter": | |
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024) | |
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20) | |
parser = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap} | |
# Save the parser type and parameters to the session state | |
st.session_state['node_parser_type'] = parser_type | |
st.session_state['node_parser_params'] = parser_params | |
return parser, parser_type | |
def select_response_synthesis_method(): | |
st.header("Choose Response Synthesis Method") | |
response_modes = [ | |
"refine", | |
"tree_summarize", | |
"compact", | |
"simple_summarize", | |
"accumulate", | |
"compact_accumulate" | |
] | |
selected_mode = st.selectbox("Select Response Mode", response_modes, on_change=reset_pipeline_generated) | |
response_mode = selected_mode | |
return response_mode, selected_mode | |
def select_vector_store(): | |
st.header("Choose Vector Store") | |
vector_stores = ["Simple", "Pinecone", "Qdrant"] | |
selected_store = st.selectbox("Select Vector Store", vector_stores, on_change=reset_pipeline_generated) | |
vector_store = None | |
if selected_store == "Pinecone": | |
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY']) | |
index = pc.Index("test") | |
vector_store = PineconeVectorStore(pinecone_index=index) | |
elif selected_store == "Qdrant": | |
client = qdrant_client.QdrantClient(location=":memory:") | |
vector_store = QdrantVectorStore(client=client, collection_name="sampledata") | |
st.write(selected_store) | |
return vector_store, selected_store | |
def generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store): | |
if vector_store is not None: | |
# Set storage context if vector_store is not None | |
storage_context = StorageContext.from_defaults(vector_store=vector_store) | |
else: | |
storage_context = None | |
# Create the service context | |
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser) | |
# Create the vector index | |
vector_index = VectorStoreIndex.from_documents(documents=file, storage_context=storage_context, service_context=service_context, show_progress=True) | |
if storage_context: | |
vector_index.storage_context.persist(persist_dir="persist_dir") | |
# Create the query engine | |
query_engine = vector_index.as_query_engine( | |
response_mode=response_mode, | |
verbose=True, | |
) | |
return query_engine | |
def send_query(): | |
query = st.session_state['query'] | |
response = f"Response for the query: {query}" | |
st.markdown(response) | |
def generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode, vector_store_choice): | |
node_parser_params = st.session_state.get('node_parser_params', {}) | |
print(node_parser_params) | |
code_snippet = "from llama_index.llms import OpenAI, Gemini, Cohere\n" | |
code_snippet += "from llama_index.embeddings import HuggingFaceEmbedding\n" | |
code_snippet += "from llama_index import ServiceContext, VectorStoreIndex, StorageContext\n" | |
code_snippet += "from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter\n" | |
code_snippet += "from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser\n" | |
code_snippet += "from llama_index.vector_stores import MilvusVectorStore, QdrantVectorStore\n" | |
code_snippet += "import qdrant_client\n\n" | |
# LLM initialization | |
if llm_choice == "GPT-3.5": | |
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-3.5-turbo-1106')\n" | |
elif llm_choice == "GPT-4": | |
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-4-1106-preview')\n" | |
elif llm_choice == "Gemini": | |
code_snippet += "llm = Gemini(model='models/gemini-pro')\n" | |
elif llm_choice == "Cohere": | |
code_snippet += "llm = Cohere(model='command', api_key='<YOUR_API_KEY>') # Replace <YOUR_API_KEY> with your actual API key\n" | |
# Embedding model initialization | |
code_snippet += f"embed_model = HuggingFaceEmbedding(model_name='{embed_model_choice}')\n\n" | |
# Node parser initialization | |
node_parsers = { | |
"SentenceSplitter": f"SentenceSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})", | |
"CodeSplitter": f"CodeSplitter(language={node_parser_params.get('language', 'python')}, chunk_lines={node_parser_params.get('chunk_lines', 40)}, chunk_lines_overlap={node_parser_params.get('chunk_lines_overlap', 15)}, max_chars={node_parser_params.get('max_chars', 1500)})", | |
"SemanticSplitterNodeParser": f"SemanticSplitterNodeParser(buffer_size={node_parser_params.get('buffer_size', 1)}, breakpoint_percentile_threshold={node_parser_params.get('breakpoint_percentile_threshold', 95)}, embed_model=embed_model)", | |
"TokenTextSplitter": f"TokenTextSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})", | |
"HTMLNodeParser": f"HTMLNodeParser(tags={node_parser_params.get('tags', ['p', 'h1'])})", | |
"JSONNodeParser": "JSONNodeParser()", | |
"MarkdownNodeParser": "MarkdownNodeParser()" | |
} | |
code_snippet += f"node_parser = {node_parsers[node_parser_choice]}\n\n" | |
# Response mode | |
code_snippet += f"response_mode = '{response_mode}'\n\n" | |
# Vector store initialization | |
if vector_store_choice == "Faiss": | |
code_snippet += "d = 1536\n" | |
code_snippet += "faiss_index = faiss.IndexFlatL2(d)\n" | |
code_snippet += "vector_store = FaissVectorStore(faiss_index=faiss_index)\n" | |
elif vector_store_choice == "Milvus": | |
code_snippet += "vector_store = MilvusVectorStore(dim=1536, overwrite=True)\n" | |
elif vector_store_choice == "Qdrant": | |
code_snippet += "client = qdrant_client.QdrantClient(location=':memory:')\n" | |
code_snippet += "vector_store = QdrantVectorStore(client=client, collection_name='sampledata')\n" | |
elif vector_store_choice == "Simple": | |
code_snippet += "vector_store = None # Simple in-memory vector store selected\n" | |
code_snippet += "\n# Finalizing the RAG pipeline setup\n" | |
code_snippet += "if vector_store is not None:\n" | |
code_snippet += " storage_context = StorageContext.from_defaults(vector_store=vector_store)\n" | |
code_snippet += "else:\n" | |
code_snippet += " storage_context = None\n\n" | |
code_snippet += "service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)\n\n" | |
code_snippet += "_file = 'path_to_your_file' # Replace with the path to your file\n" | |
code_snippet += "vector_index = VectorStoreIndex.from_documents(documents=_file, storage_context=storage_context, service_context=service_context, show_progress=True)\n" | |
code_snippet += "if storage_context:\n" | |
code_snippet += " vector_index.storage_context.persist(persist_dir='persist_dir')\n\n" | |
code_snippet += "query_engine = vector_index.as_query_engine(response_mode=response_mode, verbose=True)\n" | |
return code_snippet | |
def main(): | |
st.title("RAGArch: RAG Pipeline Tester and Code Generator") | |
st.markdown(""" | |
- **Configure and Test RAG Pipelines with Custom Parameters** | |
- **Automatically Generate Plug-and-Play Implementation Code Based on Your Configuration** | |
""") | |
# Sidebar Intro | |
st.sidebar.markdown('## App Created By') | |
st.sidebar.markdown(""" | |
Harshad Suryawanshi: | |
[Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/), [Medium](https://harshadsuryawanshi.medium.com/), [X](https://twitter.com/HarshadSurya1c) | |
""") | |
st.sidebar.markdown('## Other Projects') | |
st.sidebar.markdown(""" | |
- [C3 Voice Assistant - Making LLM/RAG Apps Accessible to Everyone](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-gpt3-activity-7149796976442740736-1lXj?utm_source=share&utm_medium=member_desktop) | |
- [NA2SQL - Extracting Insights from Databases using Natural Language](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-streamlit-activity-7141801596006440960-mCjT) | |
- [Pokemon Go! Inspired AInimal GO! - Multimodal RAG App](https://www.linkedin.com/posts/harshadsuryawanshi_llamaindex-ai-deeplearning-activity-7134632983495327744-M7yy) | |
- [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP) | |
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/) | |
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/) | |
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/) | |
""") | |
st.sidebar.markdown('## Disclaimer') | |
st.sidebar.markdown("""This application is for demonstration purposes only and may not cover all aspects of real-world data complexities. Please use it as a guide and not as a definitive source for decision-making.""") | |
# Upload file | |
file = upload_file() | |
# Select RAG components | |
llm, llm_choice = select_llm() | |
embed_model, embed_model_choice = select_embedding_model() | |
node_parser, node_parser_choice = select_node_parser() | |
# Process nodes only if a file has been uploaded | |
if file is not None: | |
if node_parser: | |
nodes = node_parser.get_nodes_from_documents(file) | |
st.write("First node: ") | |
st.code(f"{nodes[0].text}") | |
response_mode, response_mode_choice = select_response_synthesis_method() | |
vector_store, vector_store_choice = select_vector_store() | |
# Generate RAG Pipeline Button | |
if file is not None: | |
if st.button("Generate RAG Pipeline"): | |
with st.spinner(): | |
query_engine = generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store) | |
st.session_state['query_engine'] = query_engine | |
st.session_state['pipeline_generated'] = True | |
st.success("RAG Pipeline Generated Successfully!") | |
elif file is None: | |
st.error('Please upload a file') | |
# After generating the RAG pipeline | |
if st.session_state.get('pipeline_generated', False): | |
query = st.text_input("Enter your query", key='query') | |
if st.button("Send"): | |
if 'query_engine' in st.session_state: | |
response = st.session_state['query_engine'].query(query) | |
st.markdown(response, unsafe_allow_html=True) | |
else: | |
st.error("Query engine not initialized. Please generate the RAG pipeline first.") | |
if file and st.button("Generate Code Snippet"): | |
code_snippet = generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode_choice, vector_store_choice) | |
st.code(code_snippet, language='python') | |
if __name__ == "__main__": | |
main() |