Spaces:
Build error
Build error
from huggingface_hub import from_pretrained_keras | |
from keras_cv import models | |
import gradio as gr | |
from tensorflow import keras | |
keras.mixed_precision.set_global_policy("mixed_float16") | |
# prepare model | |
resolution = 512 | |
sd_dreambooth_model = models.StableDiffusion( | |
img_width=resolution, img_height=resolution | |
) | |
db_diffusion_model = from_pretrained_keras("kfahn/dreambooth-mandelbulb") | |
sd_dreambooth_model._diffusion_model = db_diffusion_model | |
# generate images | |
def infer(prompt, negative_prompt, guidance_scale=10, num_inference_steps=50): | |
neg = negative_prompt if negative_prompt else None | |
imgs = [] | |
while len(imgs) != 2: | |
next_prompt = pipeline(prompt, negative_prompt=neg, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=5) | |
for img, is_neg in zip(next_prompt.images, next_prompt.nsfw_content_detected): | |
if not is_neg: | |
imgs.append(img) | |
if len(imgs) == 2: | |
break | |
return imgs | |
output = gr.Gallery(label="Outputs").style(grid=(1,2)) | |
# customize interface | |
title = "Dreambooth Mandelbulb flower" | |
description = "This is a dreambooth model fine-tuned on mandelbulb images. To try it, input the concept with {sks a hydrangea floweret shaped like a mandelbulb}." | |
examples=[["sks a hydrangea floweret shaped like a mandelbulb on a bush"]] | |
gr.Interface(infer, inputs=["text"], outputs=[output], title=title, description=description, examples=examples).queue().launch() | |