import gradio as gr import tensorflow as tf from huggingface_hub import from_pretrained_keras import numpy as np model = from_pretrained_keras("keras-io/deit") classes=['dandelion','daisy','tulip','sunflower','rose'] image_size = 224 def classify_images(image): image = tf.convert_to_tensor(image) image = tf.image.resize(image, (image_size, image_size)) image = tf.expand_dims(image,axis=0) prediction = model.predict(image) prediction = tf.squeeze(tf.round(prediction)) text_output = str(f'{classes[(np.argmax(prediction))]}!') return text_output i = gr.inputs.Image() o = gr.outputs.Textbox() examples = [["./examples/tulip.png"], ["./examples/daisy.jpeg"], ["./examples/dandelion.jpeg"], ["./examples/rose.png"], ["./examples/sunflower.png"]] title = "Distill ViT Flowers Classification" description = "Upload an image or select from examples to classify flowers. [Explore model](https://huggingface.co/keras-io/deit)" article = "
" gr.Interface(classify_images, i, o, allow_flagging=False, analytics_enabled=False, title=title, examples=examples, description=description, article=article).launch(enable_queue=True, debug=True)