from bark.generation import load_codec_model, generate_text_semantic, grab_best_device from encodec.utils import convert_audio import torchaudio import torch import os import gradio def clone_voice(audio_filepath, text, dest_filename, progress=gradio.Progress(track_tqdm=True)): if len(text) < 1: raise gradio.Error('No transcription text entered!') use_gpu = not os.environ.get("BARK_FORCE_CPU", False) progress(0, desc="Loading Codec") model = load_codec_model(use_gpu=use_gpu) progress(0.25, desc="Converting WAV") # Load and pre-process the audio waveform device = grab_best_device(use_gpu) wav, sr = torchaudio.load(audio_filepath) wav = convert_audio(wav, sr, model.sample_rate, model.channels) wav = wav.unsqueeze(0).to(device) progress(0.5, desc="Extracting codes") # Extract discrete codes from EnCodec with torch.no_grad(): encoded_frames = model.encode(wav) codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T] # get seconds of audio seconds = wav.shape[-1] / model.sample_rate # generate semantic tokens semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7) # move codes to cpu codes = codes.cpu().numpy() import numpy as np output_path = dest_filename + '.npz' np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens) return "Finished"