import os
import sys
os.system("git clone https://github.com/C0untFloyd/bark-gui.git")
sys.path.append("./bark-gui/")
from cProfile import label
from distutils.command.check import check
from doctest import Example
import gradio as gr
import numpy as np
import logging
import torch
import pytorch_seed
import time
from xml.sax import saxutils
from bark.api import generate_with_settings
from bark.api import save_as_prompt
from settings import Settings
#import nltk
from bark import SAMPLE_RATE
from bark.clonevoice import clone_voice
from bark.generation import SAMPLE_RATE, preload_models
from scipy.io.wavfile import write as write_wav
from parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml
from datetime import datetime
from tqdm.auto import tqdm
from id3tagging import add_id3_tag
import shutil
import string
import argparse
import json
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
from TTS.utils.audio import AudioProcessor
except:
from TTS.utils.audio import AudioProcessor
from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *
from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
# from google.colab import files
import librosa
from scipy.io.wavfile import write, read
import subprocess
OUTPUTFOLDER = "Outputs"
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, progress=gr.Progress(track_tqdm=True)):
if text == None or len(text) < 1:
raise gr.Error('No text entered!')
# Chunk the text into smaller pieces then combine the generated audio
# generation settings
if selected_speaker == 'None':
selected_speaker = None
if seed != None and seed > 2**32 - 1:
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random")
seed = None
if seed == None or seed <= 0:
seed = np.random.default_rng().integers(1, 2**32 - 1)
assert(0 < seed and seed < 2**32)
voice_name = selected_speaker
use_last_generation_as_history = "Use last generation as history" in complete_settings
save_last_generation = "Save generation as Voice" in complete_settings
progress(0, desc="Generating")
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # quarter second of silence
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence
full_generation = None
all_parts = []
complete_text = ""
text = text.lstrip()
if is_ssml(text):
list_speak = create_clips_from_ssml(text)
prev_speaker = None
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)):
selected_speaker = clip[0]
# Add pause break between speakers
if i > 0 and selected_speaker != prev_speaker:
all_parts += [silencelong.copy()]
prev_speaker = selected_speaker
text = clip[1]
text = saxutils.unescape(text)
if selected_speaker == "None":
selected_speaker = None
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {seed}):`{text}`")
complete_text += text
with pytorch_seed.SavedRNG(seed):
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
seed = torch.random.initial_seed()
if len(list_speak) > 1:
filename = create_filename(OUTPUTFOLDER, seed, "audioclip",".wav")
save_wav(audio_array, filename)
add_id3_tag(filename, text, selected_speaker, seed)
all_parts += [audio_array]
else:
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length)
for i, text in tqdm(enumerate(texts), total=len(texts)):
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {seed}):`{text}`")
complete_text += text
if quick_generation == True:
with pytorch_seed.SavedRNG(seed):
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
seed = torch.random.initial_seed()
else:
full_output = use_last_generation_as_history or save_last_generation
if full_output:
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True)
else:
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format
# audio_array = (audio_array * 32767).astype(np.int16)
if len(texts) > 1:
filename = create_filename(OUTPUTFOLDER, seed, "audioclip",".wav")
save_wav(audio_array, filename)
add_id3_tag(filename, text, selected_speaker, seed)
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True):
# save to npz
voice_name = create_filename(OUTPUTFOLDER, seed, "audioclip", ".npz")
save_as_prompt(voice_name, full_generation)
if use_last_generation_as_history:
selected_speaker = voice_name
all_parts += [audio_array]
# Add short pause between sentences
if text[-1] in "!?.\n" and i > 1:
all_parts += [silenceshort.copy()]
# save & play audio
result = create_filename(OUTPUTFOLDER, seed, "final",".wav")
save_wav(np.concatenate(all_parts), result)
# write id3 tag with text truncated to 60 chars, as a precaution...
add_id3_tag(result, complete_text, selected_speaker, seed)
return result
def create_filename(path, seed, name, extension):
now = datetime.now()
date_str =now.strftime("%m-%d-%Y")
outputs_folder = os.path.join(os.getcwd(), path)
if not os.path.exists(outputs_folder):
os.makedirs(outputs_folder)
sub_folder = os.path.join(outputs_folder, date_str)
if not os.path.exists(sub_folder):
os.makedirs(sub_folder)
time_str = now.strftime("%H-%M-%S")
file_name = f"{name}_{time_str}_s{seed}{extension}"
return os.path.join(sub_folder, file_name)
def save_wav(audio_array, filename):
write_wav(filename, SAMPLE_RATE, audio_array)
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
np.savez_compressed(
filename,
semantic_prompt=semantic_prompt,
coarse_prompt=coarse_prompt,
fine_prompt=fine_prompt
)
def on_quick_gen_changed(checkbox):
if checkbox == False:
return gr.CheckboxGroup.update(visible=True)
return gr.CheckboxGroup.update(visible=False)
def delete_output_files(checkbox_state):
if checkbox_state:
outputs_folder = os.path.join(os.getcwd(), OUTPUTFOLDER)
if os.path.exists(outputs_folder):
purgedir(outputs_folder)
return False
# https://stackoverflow.com/a/54494779
def purgedir(parent):
for root, dirs, files in os.walk(parent):
for item in files:
# Delete subordinate files
filespec = os.path.join(root, item)
os.unlink(filespec)
for item in dirs:
# Recursively perform this operation for subordinate directories
purgedir(os.path.join(root, item))
def convert_text_to_ssml(text, selected_speaker):
return build_ssml(text, selected_speaker)
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker):
settings.selected_theme = themes
settings.server_name = input_server_name
settings.server_port = input_server_port
settings.server_share = input_server_public
settings.input_text_desired_length = input_desired_len
settings.input_text_max_length = input_max_len
settings.silence_sentence = input_silence_break
settings.silence_speaker = input_silence_speaker
settings.save()
def restart():
global restart_server
restart_server = True
def create_version_html():
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
versions_html = f"""
python: {python_version}
•
torch: {getattr(torch, '__long_version__',torch.__version__)}
•
gradio: {gr.__version__}
"""
return versions_html
logger = logging.getLogger(__name__)
APPTITLE = "Bark UI Enhanced v0.4.6"
autolaunch = False
if len(sys.argv) > 1:
autolaunch = "-autolaunch" in sys.argv
if torch.cuda.is_available() == False:
os.environ['BARK_FORCE_CPU'] = 'True'
logger.warning("No CUDA detected, fallback to CPU!")
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
print(f'autolaunch={autolaunch}\n\n')
#print("Updating nltk\n")
#nltk.download('punkt')
print("Preloading Models\n")
preload_models()
settings = Settings('config.yaml')
# Collect all existing speakers/voices in dir
speakers_list = []
for root, dirs, files in os.walk("./bark/assets/prompts"):
for file in files:
if(file.endswith(".npz")):
pathpart = root.replace("./bark/assets/prompts", "")
name = os.path.join(pathpart, file[:-4])
if name.startswith("/") or name.startswith("\\"):
name = name[1:]
speakers_list.append(name)
speakers_list = sorted(speakers_list, key=lambda x: x.lower())
speakers_list.insert(0, 'None')
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]
seed = -1
server_name = settings.server_name
if len(server_name) < 1:
server_name = None
server_port = settings.server_port
if server_port <= 0:
server_port = None
global run_server
global restart_server
run_server = True
'''
from google.colab import drive
drive.mount('/content/drive')
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
shutil.copy(src_path, dst_path)
'''
TTS_PATH = "TTS/"
# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
# Paths definition
OUT_PATH = 'out/'
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
# model vars
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()
# load the config
C = load_config(CONFIG_PATH)
# load the audio processor
ap = AudioProcessor(**C.audio)
speaker_embedding = None
C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False
model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
if "speaker_encoder" in key:
del model_weights[key]
model.load_state_dict(model_weights)
model.eval()
if USE_CUDA:
model = model.cuda()
# synthesize voice
use_griffin_lim = False
# Paths definition
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
# Load the Speaker encoder
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
# Define helper function
def compute_spec(ref_file):
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
spec = ap.spectrogram(y)
spec = torch.FloatTensor(spec).unsqueeze(0)
return spec
def voice_conversion(ta, ra, da):
target_audio = 'target.wav'
reference_audio = 'reference.wav'
driving_audio = 'driving.wav'
write(target_audio, ta[0], ta[1])
write(reference_audio, ra[0], ra[1])
write(driving_audio, da[0], da[1])
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
files = [target_audio, reference_audio, driving_audio]
for file in files:
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
# ta_ = read(target_audio)
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
# Convert the voice
driving_spec = compute_spec(driving_audio)
y_lengths = torch.tensor([driving_spec.size(-1)])
if USE_CUDA:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
else:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
# print("Reference Audio after decoder:")
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
return (ap.sample_rate, ref_wav_voc)
while run_server:
print(f'Launching {APPTITLE} Server')
# Create Gradio Blocks
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui:
with gr.Row():
with gr.Column():
gr.Markdown(f"### [{APPTITLE}](https://github.com/C0untFloyd/bark-gui)")
with gr.Column():
gr.HTML(create_version_html(), elem_id="versions")
with gr.Tab("TTS"):
with gr.Row():
with gr.Column():
placeholder = "Enter text here."
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder)
with gr.Column():
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
convert_to_ssml_button = gr.Button("Convert Text to SSML")
with gr.Row():
with gr.Column():
examples = [
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:",
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪",
"And now — a picture of a larch [laughter]",
"""
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
""",
"""
Look at that drunk guy!
Who is he?
WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.
Oh my God [laughs] he is still celebrating
"""
]
examples = gr.Examples(examples=examples, inputs=input_text)
with gr.Row():
with gr.Column():
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)")
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice")
with gr.Column():
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative")
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")
with gr.Row():
with gr.Column():
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True)
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"]
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
with gr.Column():
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability")
with gr.Row():
with gr.Column():
tts_create_button = gr.Button("Generate")
with gr.Column():
hidden_checkbox = gr.Checkbox(visible=False)
button_stop_generation = gr.Button("Stop generation")
with gr.Row():
output_audio = gr.Audio(label="Generated Audio")
with gr.Row():
inp1 = gr.Audio(label='Target Speaker - Reference Clip')
inp2 = output_audio
inp3 = output_audio
btn = gr.Button("Generate")
out1 = gr.Audio(label='Target Speaker - Converted Clip')
btn.click(voice_conversion, [inp1, inp2, inp3], [out1])
with gr.Tab("Clone Voice"):
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath")
transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...")
initialname = "./bark/assets/prompts/custom/MeMyselfAndI"
output_voice = gr.Textbox(label="Filename of trained Voice", lines=1, placeholder=initialname, value=initialname)
clone_voice_button = gr.Button("Create Voice")
dummy = gr.Text(label="Progress")
with gr.Tab("Settings"):
with gr.Row():
themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme)
with gr.Row():
input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name)
input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port)
share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share)
with gr.Row():
input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences")
input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length")
with gr.Row():
input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds")
input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds")
with gr.Row():
button_apply_settings = gr.Button("Apply Settings")
button_apply_restart = gr.Button("Restart Server")
button_delete_files = gr.Button("Clear output folder")
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text)
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent],outputs=output_audio)
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click])
# Javascript hack to display modal confirmation dialog
js = "(x) => confirm('Are you sure? This will remove all files from output folder')"
button_delete_files.click(None, None, hidden_checkbox, _js=js)
hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox])
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, transcription_text, output_voice], outputs=dummy)
button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers])
button_apply_restart.click(restart)
restart_server = False
try:
barkgui.queue().launch(show_error=True)
except:
restart_server = True
run_server = False
try:
while restart_server == False:
time.sleep(1.0)
except (KeyboardInterrupt, OSError):
print("Keyboard interruption in main thread... closing server.")
run_server = False
barkgui.close()