Spaces:
Runtime error
Runtime error
File size: 31,651 Bytes
134e14e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
import contextlib
import gc
import os
import re
import requests
import gc
import sys
from encodec import EncodecModel
import funcy
import logging
import numpy as np
from scipy.special import softmax
import torch
import torch.nn.functional as F
import tqdm
from transformers import BertTokenizer
from huggingface_hub import hf_hub_download, hf_hub_url
from .model import GPTConfig, GPT
from .model_fine import FineGPT, FineGPTConfig
from .settings import initenv
initenv(sys.argv)
global_force_cpu = os.environ.get("BARK_FORCE_CPU", False)
if (
global_force_cpu != True and
torch.cuda.is_available() and
hasattr(torch.cuda, "amp") and
hasattr(torch.cuda.amp, "autocast") and
hasattr(torch.cuda, "is_bf16_supported") and
torch.cuda.is_bf16_supported()
):
autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:
@contextlib.contextmanager
def autocast():
yield
# hold models in global scope to lazy load
global models
models = {}
global models_devices
models_devices = {}
CONTEXT_WINDOW_SIZE = 1024
SEMANTIC_RATE_HZ = 49.9
SEMANTIC_VOCAB_SIZE = 10_000
CODEBOOK_SIZE = 1024
N_COARSE_CODEBOOKS = 2
N_FINE_CODEBOOKS = 8
COARSE_RATE_HZ = 75
SAMPLE_RATE = 24_000
SUPPORTED_LANGS = [
("English", "en"),
("German", "de"),
("Spanish", "es"),
("French", "fr"),
("Hindi", "hi"),
("Italian", "it"),
("Japanese", "ja"),
("Korean", "ko"),
("Polish", "pl"),
("Portuguese", "pt"),
("Russian", "ru"),
("Turkish", "tr"),
("Chinese", "zh"),
]
ALLOWED_PROMPTS = {"announcer"}
for _, lang in SUPPORTED_LANGS:
for prefix in ("", f"v2{os.path.sep}"):
for n in range(10):
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")
logger = logging.getLogger(__name__)
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
#default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
#CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
#CACHE_DIR = os.path.join(os.getcwd(), "models"
CACHE_DIR = "./models"
def _cast_bool_env_var(s):
return s.lower() in ('true', '1', 't')
USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False"))
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False"))
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False"))
REMOTE_MODEL_PATHS = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch.cuda.is_available():
logger.warning(
"torch version does not support flash attention. You will get faster" +
" inference speed by upgrade torch to newest nightly version."
)
def grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS:
device = "mps"
else:
device = "cpu"
return device
def _get_ckpt_path(model_type, use_small=False):
key = model_type
if use_small or USE_SMALL_MODELS:
key += "_small"
return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"])
"""
def _download(from_hf_path, file_name, destfilename):
os.makedirs(CACHE_DIR, exist_ok=True)
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR, local_dir_use_symlinks=False)
# Bug in original repo? Downloaded name differs from expected...
if not os.path.exists(destfilename):
localname = os.path.join(CACHE_DIR, file_name)
os.rename(localname, destfilename)
"""
def _download(from_hf_path, file_name):
os.makedirs(CACHE_DIR, exist_ok=True)
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR)
class InferenceContext:
def __init__(self, benchmark=False):
# we can't expect inputs to be the same length, so disable benchmarking by default
self._chosen_cudnn_benchmark = benchmark
self._cudnn_benchmark = None
def __enter__(self):
self._cudnn_benchmark = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
def __exit__(self, exc_type, exc_value, exc_traceback):
torch.backends.cudnn.benchmark = self._cudnn_benchmark
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
@contextlib.contextmanager
def _inference_mode():
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
yield
def _clear_cuda_cache():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def clean_models(model_key=None):
global models
model_keys = [model_key] if model_key is not None else models.keys()
for k in model_keys:
if k in models:
del models[k]
_clear_cuda_cache()
gc.collect()
def _load_model(ckpt_path, device, use_small=False, model_type="text"):
if model_type == "text":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "coarse":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "fine":
ConfigClass = FineGPTConfig
ModelClass = FineGPT
else:
raise NotImplementedError()
# Force-remove Models to allow running on >12Gb GPU
# CF: Probably not needed anymore
#global models
#models.clear()
#gc.collect()
#torch.cuda.empty_cache()
# to here...
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type
model_info = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(ckpt_path):
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
## added next two lines to make it super clear which model is being downloaded
remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"])
print(f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}")
_download(model_info["repo_id"], model_info["file_name"])
# add next line to make it super clear which model is being loaded
print(f"Loading {model_key} model from {ckpt_path} to {device}") # added
checkpoint = torch.load(ckpt_path, map_location=device)
# this is a hack
model_args = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
model_args["input_vocab_size"] = model_args["vocab_size"]
model_args["output_vocab_size"] = model_args["vocab_size"]
del model_args["vocab_size"]
gptconf = ConfigClass(**checkpoint["model_args"])
model = ModelClass(gptconf)
state_dict = checkpoint["model"]
# fixup checkpoint
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")])
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")])
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
model.load_state_dict(state_dict, strict=False)
n_params = model.get_num_params()
val_loss = checkpoint["best_val_loss"].item()
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
model.eval()
model.to(device)
del checkpoint, state_dict
_clear_cuda_cache()
if model_type == "text":
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
return {
"model": model,
"tokenizer": tokenizer,
}
return model
def _load_codec_model(device):
model = EncodecModel.encodec_model_24khz()
model.set_target_bandwidth(6.0)
model.eval()
model.to(device)
_clear_cuda_cache()
return model
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"):
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small)
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
global models
global models_devices
device = grab_best_device(use_gpu=use_gpu)
model_key = f"{model_type}"
if OFFLOAD_CPU:
models_devices[model_key] = device
device = "cpu"
if model_key not in models or force_reload:
ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
clean_models(model_key=model_key)
model = _load_model_f(ckpt_path, device)
models[model_key] = model
if model_type == "text":
models[model_key]["model"].to(device)
else:
models[model_key].to(device)
return models[model_key]
def load_codec_model(use_gpu=True, force_reload=False):
global models
global models_devices
device = grab_best_device(use_gpu=use_gpu)
if device == "mps":
# encodec doesn't support mps
device = "cpu"
model_key = "codec"
if OFFLOAD_CPU:
models_devices[model_key] = device
device = "cpu"
if model_key not in models or force_reload:
clean_models(model_key=model_key)
model = _load_codec_model(device)
models[model_key] = model
models[model_key].to(device)
return models[model_key]
def preload_models(
text_use_gpu=True,
text_use_small=False,
coarse_use_gpu=True,
coarse_use_small=False,
fine_use_gpu=True,
fine_use_small=False,
codec_use_gpu=True,
force_reload=False
):
"""Load all the necessary models for the pipeline."""
if grab_best_device() == "cpu" and (
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu
):
logger.warning("No GPU being used. Careful, inference might be very slow!")
_ = load_model(
model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload
)
_ = load_model(
model_type="coarse",
use_gpu=coarse_use_gpu,
use_small=coarse_use_small,
force_reload=force_reload,
)
_ = load_model(
model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload
)
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)
####
# Generation Functionality
####
def _tokenize(tokenizer, text):
return tokenizer.encode(text, add_special_tokens=False)
def _detokenize(tokenizer, enc_text):
return tokenizer.decode(enc_text)
def _normalize_whitespace(text):
return re.sub(r"\s+", " ", text).strip()
TEXT_ENCODING_OFFSET = 10_048
SEMANTIC_PAD_TOKEN = 10_000
TEXT_PAD_TOKEN = 129_595
SEMANTIC_INFER_TOKEN = 129_599
def _load_history_prompt(history_prompt_input):
if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"):
history_prompt = np.load(history_prompt_input)
elif isinstance(history_prompt_input, str):
# make sure this works on non-ubuntu
history_prompt_input = os.path.join(*history_prompt_input.split("/"))
# if history_prompt_input not in ALLOWED_PROMPTS:
# raise ValueError("history prompt not found")
history_prompt = np.load(
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz")
)
elif isinstance(history_prompt_input, dict):
assert("semantic_prompt" in history_prompt_input)
assert("coarse_prompt" in history_prompt_input)
assert("fine_prompt" in history_prompt_input)
history_prompt = history_prompt_input
else:
raise ValueError("history prompt format unrecognized")
return history_prompt
def generate_text_semantic(
text,
history_prompt=None,
temp=0.7,
top_k=None,
top_p=None,
silent=False,
min_eos_p=0.2,
max_gen_duration_s=None,
allow_early_stop=True,
use_kv_caching=False,
):
"""Generate semantic tokens from text."""
assert isinstance(text, str)
text = _normalize_whitespace(text)
assert len(text.strip()) > 0
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
semantic_history = history_prompt["semantic_prompt"]
assert (
isinstance(semantic_history, np.ndarray)
and len(semantic_history.shape) == 1
and len(semantic_history) > 0
and semantic_history.min() >= 0
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
)
else:
semantic_history = None
# load models if not yet exist
global models
global models_devices
if "text" not in models:
preload_models()
model_container = models["text"]
model = model_container["model"]
tokenizer = model_container["tokenizer"]
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
if OFFLOAD_CPU:
model.to(models_devices["text"])
device = next(model.parameters()).device
if len(encoded_text) > 256:
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
logger.warning(f"warning, text too long, lopping of last {p}%")
encoded_text = encoded_text[:256]
encoded_text = np.pad(
encoded_text,
(0, 256 - len(encoded_text)),
constant_values=TEXT_PAD_TOKEN,
mode="constant",
)
if semantic_history is not None:
semantic_history = semantic_history.astype(np.int64)
# lop off if history is too long, pad if needed
semantic_history = semantic_history[-256:]
semantic_history = np.pad(
semantic_history,
(0, 256 - len(semantic_history)),
constant_values=SEMANTIC_PAD_TOKEN,
mode="constant",
)
else:
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
x = torch.from_numpy(
np.hstack([
encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])
]).astype(np.int64)
)[None]
assert x.shape[1] == 256 + 256 + 1
with _inference_mode():
x = x.to(device)
n_tot_steps = 768
# custom tqdm updates since we don't know when eos will occur
pbar = tqdm.tqdm(disable=silent, total=100)
pbar_state = 0
tot_generated_duration_s = 0
kv_cache = None
for n in range(n_tot_steps):
if use_kv_caching and kv_cache is not None:
x_input = x[:, [-1]]
else:
x_input = x
logits, kv_cache = model(
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
)
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
if allow_early_stop:
relevant_logits = torch.hstack(
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos
)
if top_p is not None:
# faster to convert to numpy
original_device = relevant_logits.device
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
sorted_indices = np.argsort(relevant_logits)[::-1]
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
relevant_logits = relevant_logits.to(original_device)
if top_k is not None:
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
probs = F.softmax(relevant_logits / temp, dim=-1)
# multinomial bugged on mps: shuttle to cpu if necessary
inf_device = probs.device
if probs.device.type == "mps":
probs = probs.to("cpu")
item_next = torch.multinomial(probs, num_samples=1)
probs = probs.to(inf_device)
item_next = item_next.to(inf_device)
if allow_early_stop and (
item_next == SEMANTIC_VOCAB_SIZE
or (min_eos_p is not None and probs[-1] >= min_eos_p)
):
# eos found, so break
pbar.update(100 - pbar_state)
break
x = torch.cat((x, item_next[None]), dim=1)
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
pbar.update(100 - pbar_state)
break
if n == n_tot_steps - 1:
pbar.update(100 - pbar_state)
break
del logits, relevant_logits, probs, item_next
req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))])
if req_pbar_state > pbar_state:
pbar.update(req_pbar_state - pbar_state)
pbar_state = req_pbar_state
pbar.close()
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
if OFFLOAD_CPU:
model.to("cpu")
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
_clear_cuda_cache()
return out
def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE):
assert len(arr.shape) == 2
arr = arr.copy()
if offset_size is not None:
for n in range(1, arr.shape[0]):
arr[n, :] += offset_size * n
flat_arr = arr.ravel("F")
return flat_arr
COARSE_SEMANTIC_PAD_TOKEN = 12_048
COARSE_INFER_TOKEN = 12_050
def generate_coarse(
x_semantic,
history_prompt=None,
temp=0.7,
top_k=None,
top_p=None,
silent=False,
max_coarse_history=630, # min 60 (faster), max 630 (more context)
sliding_window_len=60,
use_kv_caching=False,
):
"""Generate coarse audio codes from semantic tokens."""
# CF: Uncommented because it breaks swap voice more than once
# assert (
# isinstance(x_semantic, np.ndarray)
# and len(x_semantic.shape) == 1
# and len(x_semantic) > 0
# and x_semantic.min() >= 0
# and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
# )
assert 60 <= max_coarse_history <= 630
assert max_coarse_history + sliding_window_len <= 1024 - 256
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
x_semantic_history = history_prompt["semantic_prompt"]
x_coarse_history = history_prompt["coarse_prompt"]
assert (
isinstance(x_semantic_history, np.ndarray)
and len(x_semantic_history.shape) == 1
and len(x_semantic_history) > 0
and x_semantic_history.min() >= 0
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
and isinstance(x_coarse_history, np.ndarray)
and len(x_coarse_history.shape) == 2
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
and x_coarse_history.shape[-1] >= 0
and x_coarse_history.min() >= 0
and x_coarse_history.max() <= CODEBOOK_SIZE - 1
#and (
# round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
# == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
#)
)
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
# trim histories correctly
n_semantic_hist_provided = np.min(
[
max_semantic_history,
len(x_semantic_history) - len(x_semantic_history) % 2,
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
]
)
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
# TODO: bit of a hack for time alignment (sounds better)
x_coarse_history = x_coarse_history[:-2]
else:
x_semantic_history = np.array([], dtype=np.int32)
x_coarse_history = np.array([], dtype=np.int32)
# load models if not yet exist
global models
global models_devices
if "coarse" not in models:
preload_models()
model = models["coarse"]
if OFFLOAD_CPU:
model.to(models_devices["coarse"])
device = next(model.parameters()).device
# start loop
n_steps = int(
round(
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
* N_COARSE_CODEBOOKS
)
)
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
x_coarse = x_coarse_history.astype(np.int32)
base_semantic_idx = len(x_semantic_history)
with _inference_mode():
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device)
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device)
n_window_steps = int(np.ceil(n_steps / sliding_window_len))
n_step = 0
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
# pad from right side
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
x_in = x_in[:, :256]
x_in = F.pad(
x_in,
(0, 256 - x_in.shape[-1]),
"constant",
COARSE_SEMANTIC_PAD_TOKEN,
)
x_in = torch.hstack(
[
x_in,
torch.tensor([COARSE_INFER_TOKEN])[None].to(device),
x_coarse_in[:, -max_coarse_history:],
]
)
kv_cache = None
for _ in range(sliding_window_len):
if n_step >= n_steps:
continue
is_major_step = n_step % N_COARSE_CODEBOOKS == 0
if use_kv_caching and kv_cache is not None:
x_input = x_in[:, [-1]]
else:
x_input = x_in
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
logit_start_idx = (
SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
)
logit_end_idx = (
SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
)
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
if top_p is not None:
# faster to convert to numpy
original_device = relevant_logits.device
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
sorted_indices = np.argsort(relevant_logits)[::-1]
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
relevant_logits = relevant_logits.to(original_device)
if top_k is not None:
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
probs = F.softmax(relevant_logits / temp, dim=-1)
# multinomial bugged on mps: shuttle to cpu if necessary
inf_device = probs.device
if probs.device.type == "mps":
probs = probs.to("cpu")
item_next = torch.multinomial(probs, num_samples=1)
probs = probs.to(inf_device)
item_next = item_next.to(inf_device)
item_next += logit_start_idx
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
x_in = torch.cat((x_in, item_next[None]), dim=1)
del logits, relevant_logits, probs, item_next
n_step += 1
del x_in
del x_semantic_in
if OFFLOAD_CPU:
model.to("cpu")
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
del x_coarse_in
assert len(gen_coarse_arr) == n_steps
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
for n in range(1, N_COARSE_CODEBOOKS):
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
_clear_cuda_cache()
return gen_coarse_audio_arr
def generate_fine(
x_coarse_gen,
history_prompt=None,
temp=0.5,
silent=True,
):
"""Generate full audio codes from coarse audio codes."""
assert (
isinstance(x_coarse_gen, np.ndarray)
and len(x_coarse_gen.shape) == 2
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1
and x_coarse_gen.shape[1] > 0
and x_coarse_gen.min() >= 0
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1
)
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
x_fine_history = history_prompt["fine_prompt"]
assert (
isinstance(x_fine_history, np.ndarray)
and len(x_fine_history.shape) == 2
and x_fine_history.shape[0] == N_FINE_CODEBOOKS
and x_fine_history.shape[1] >= 0
and x_fine_history.min() >= 0
and x_fine_history.max() <= CODEBOOK_SIZE - 1
)
else:
x_fine_history = None
n_coarse = x_coarse_gen.shape[0]
# load models if not yet exist
global models
global models_devices
if "fine" not in models:
preload_models()
model = models["fine"]
if OFFLOAD_CPU:
model.to(models_devices["fine"])
device = next(model.parameters()).device
# make input arr
in_arr = np.vstack(
[
x_coarse_gen,
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
+ CODEBOOK_SIZE, # padding
]
).astype(np.int32)
# prepend history if available (max 512)
if x_fine_history is not None:
x_fine_history = x_fine_history.astype(np.int32)
in_arr = np.hstack(
[
x_fine_history[:, -512:].astype(np.int32),
in_arr,
]
)
n_history = x_fine_history[:, -512:].shape[1]
else:
n_history = 0
n_remove_from_end = 0
# need to pad if too short (since non-causal model)
if in_arr.shape[1] < 1024:
n_remove_from_end = 1024 - in_arr.shape[1]
in_arr = np.hstack(
[
in_arr,
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE,
]
)
# we can be lazy about fractional loop and just keep overwriting codebooks
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
with _inference_mode():
in_arr = torch.tensor(in_arr.T).to(device)
for n in tqdm.tqdm(range(n_loops), disable=silent):
start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
rel_start_fill_idx = start_fill_idx - start_idx
in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
for nn in range(n_coarse, N_FINE_CODEBOOKS):
logits = model(nn, in_buffer)
if temp is None:
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE]
codebook_preds = torch.argmax(relevant_logits, -1)
else:
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp
probs = F.softmax(relevant_logits, dim=-1)
# multinomial bugged on mps: shuttle to cpu if necessary
inf_device = probs.device
if probs.device.type == "mps":
probs = probs.to("cpu")
codebook_preds = torch.hstack(
[
torch.multinomial(probs[nnn], num_samples=1).to(inf_device)
for nnn in range(rel_start_fill_idx, 1024)
]
)
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
del logits, codebook_preds
# transfer over info into model_in and convert to numpy
for nn in range(n_coarse, N_FINE_CODEBOOKS):
in_arr[
start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn
] = in_buffer[0, rel_start_fill_idx:, nn]
del in_buffer
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
del in_arr
if OFFLOAD_CPU:
model.to("cpu")
gen_fine_arr = gen_fine_arr[:, n_history:]
if n_remove_from_end > 0:
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
_clear_cuda_cache()
return gen_fine_arr
def codec_decode(fine_tokens):
"""Turn quantized audio codes into audio array using encodec."""
# load models if not yet exist
global models
global models_devices
if "codec" not in models:
preload_models()
model = models["codec"]
if OFFLOAD_CPU:
model.to(models_devices["codec"])
device = next(model.parameters()).device
arr = torch.from_numpy(fine_tokens)[None]
arr = arr.to(device)
arr = arr.transpose(0, 1)
emb = model.quantizer.decode(arr)
out = model.decoder(emb)
audio_arr = out.detach().cpu().numpy().squeeze()
del arr, emb, out
if OFFLOAD_CPU:
model.to("cpu")
return audio_arr
|