Spaces:
Runtime error
Runtime error
from cProfile import label | |
import dataclasses | |
from distutils.command.check import check | |
from doctest import Example | |
import gradio as gr | |
import os | |
import sys | |
import numpy as np | |
import logging | |
import torch | |
import pytorch_seed | |
import time | |
from xml.sax import saxutils | |
from bark.api import generate_with_settings | |
from bark.api import save_as_prompt | |
from util.settings import Settings | |
#import nltk | |
from bark import SAMPLE_RATE | |
from cloning.clonevoice import clone_voice | |
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode | |
from scipy.io.wavfile import write as write_wav | |
from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml | |
from datetime import datetime | |
from tqdm.auto import tqdm | |
from util.helper import create_filename, add_id3_tag | |
from swap_voice import swap_voice_from_audio | |
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics | |
from training.train import training_prepare_files, train | |
settings = Settings('config.yaml') | |
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)): | |
# Chunk the text into smaller pieces then combine the generated audio | |
# generation settings | |
if selected_speaker == 'None': | |
selected_speaker = None | |
voice_name = selected_speaker | |
if text == None or len(text) < 1: | |
if selected_speaker == None: | |
raise gr.Error('No text entered!') | |
# Extract audio data from speaker if no text and speaker selected | |
voicedata = _load_history_prompt(voice_name) | |
audio_arr = codec_decode(voicedata["fine_prompt"]) | |
result = create_filename(settings.output_folder_path, "None", "extract",".wav") | |
save_wav(audio_arr, result) | |
return result | |
if batchcount < 1: | |
batchcount = 1 | |
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) # quarter second of silence | |
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence | |
use_last_generation_as_history = "Use last generation as history" in complete_settings | |
save_last_generation = "Save generation as Voice" in complete_settings | |
for l in range(batchcount): | |
currentseed = seed | |
if seed != None and seed > 2**32 - 1: | |
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random") | |
currentseed = None | |
if currentseed == None or currentseed <= 0: | |
currentseed = np.random.default_rng().integers(1, 2**32 - 1) | |
assert(0 < currentseed and currentseed < 2**32) | |
progress(0, desc="Generating") | |
full_generation = None | |
all_parts = [] | |
complete_text = "" | |
text = text.lstrip() | |
if is_ssml(text): | |
list_speak = create_clips_from_ssml(text) | |
prev_speaker = None | |
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)): | |
selected_speaker = clip[0] | |
# Add pause break between speakers | |
if i > 0 and selected_speaker != prev_speaker: | |
all_parts += [silencelong.copy()] | |
prev_speaker = selected_speaker | |
text = clip[1] | |
text = saxutils.unescape(text) | |
if selected_speaker == "None": | |
selected_speaker = None | |
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") | |
complete_text += text | |
with pytorch_seed.SavedRNG(currentseed): | |
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) | |
currentseed = torch.random.initial_seed() | |
if len(list_speak) > 1: | |
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") | |
save_wav(audio_array, filename) | |
add_id3_tag(filename, text, selected_speaker, currentseed) | |
all_parts += [audio_array] | |
else: | |
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length) | |
for i, text in tqdm(enumerate(texts), total=len(texts)): | |
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") | |
complete_text += text | |
if quick_generation == True: | |
with pytorch_seed.SavedRNG(currentseed): | |
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) | |
currentseed = torch.random.initial_seed() | |
else: | |
full_output = use_last_generation_as_history or save_last_generation | |
if full_output: | |
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True) | |
else: | |
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) | |
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format | |
# audio_array = (audio_array * 32767).astype(np.int16) | |
if len(texts) > 1: | |
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") | |
save_wav(audio_array, filename) | |
add_id3_tag(filename, text, selected_speaker, currentseed) | |
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True): | |
# save to npz | |
voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz") | |
save_as_prompt(voice_name, full_generation) | |
if use_last_generation_as_history: | |
selected_speaker = voice_name | |
all_parts += [audio_array] | |
# Add short pause between sentences | |
if text[-1] in "!?.\n" and i > 1: | |
all_parts += [silenceshort.copy()] | |
# save & play audio | |
result = create_filename(settings.output_folder_path, currentseed, "final",".wav") | |
save_wav(np.concatenate(all_parts), result) | |
# write id3 tag with text truncated to 60 chars, as a precaution... | |
add_id3_tag(result, complete_text, selected_speaker, currentseed) | |
return result | |
def save_wav(audio_array, filename): | |
write_wav(filename, SAMPLE_RATE, audio_array) | |
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt): | |
np.savez_compressed( | |
filename, | |
semantic_prompt=semantic_prompt, | |
coarse_prompt=coarse_prompt, | |
fine_prompt=fine_prompt | |
) | |
def on_quick_gen_changed(checkbox): | |
if checkbox == False: | |
return gr.CheckboxGroup.update(visible=True) | |
return gr.CheckboxGroup.update(visible=False) | |
def delete_output_files(checkbox_state): | |
if checkbox_state: | |
outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path) | |
if os.path.exists(outputs_folder): | |
purgedir(outputs_folder) | |
return False | |
# https://stackoverflow.com/a/54494779 | |
def purgedir(parent): | |
for root, dirs, files in os.walk(parent): | |
for item in files: | |
# Delete subordinate files | |
filespec = os.path.join(root, item) | |
os.unlink(filespec) | |
for item in dirs: | |
# Recursively perform this operation for subordinate directories | |
purgedir(os.path.join(root, item)) | |
def convert_text_to_ssml(text, selected_speaker): | |
return build_ssml(text, selected_speaker) | |
def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)): | |
if selected_step == prepare_training_list[0]: | |
prepare_semantics_from_text() | |
else: | |
prepare_wavs_from_semantics() | |
return None | |
def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)): | |
training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt") | |
train("./training/data/", save_model_epoch, max_epochs) | |
return None | |
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker): | |
settings.selected_theme = themes | |
settings.server_name = input_server_name | |
settings.server_port = input_server_port | |
settings.server_share = input_server_public | |
settings.input_text_desired_length = input_desired_len | |
settings.input_text_max_length = input_max_len | |
settings.silence_sentence = input_silence_break | |
settings.silence_speaker = input_silence_speaker | |
settings.save() | |
def restart(): | |
global restart_server | |
restart_server = True | |
def create_version_html(): | |
python_version = ".".join([str(x) for x in sys.version_info[0:3]]) | |
versions_html = f""" | |
python: <span title="{sys.version}">{python_version}</span> | |
• | |
torch: {getattr(torch, '__long_version__',torch.__version__)} | |
• | |
gradio: {gr.__version__} | |
""" | |
return versions_html | |
logger = logging.getLogger(__name__) | |
APPTITLE = "Bark Voice Cloning UI" | |
autolaunch = False | |
if len(sys.argv) > 1: | |
autolaunch = "-autolaunch" in sys.argv | |
if torch.cuda.is_available() == False: | |
os.environ['BARK_FORCE_CPU'] = 'True' | |
logger.warning("No CUDA detected, fallback to CPU!") | |
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}') | |
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}') | |
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}') | |
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}') | |
print(f'autolaunch={autolaunch}\n\n') | |
#print("Updating nltk\n") | |
#nltk.download('punkt') | |
print("Preloading Models\n") | |
preload_models() | |
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] | |
tokenizer_language_list = ["de","en", "pl"] | |
prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"] | |
seed = -1 | |
server_name = settings.server_name | |
if len(server_name) < 1: | |
server_name = None | |
server_port = settings.server_port | |
if server_port <= 0: | |
server_port = None | |
global run_server | |
global restart_server | |
run_server = True | |
while run_server: | |
# Collect all existing speakers/voices in dir | |
speakers_list = [] | |
for root, dirs, files in os.walk("./bark/assets/prompts"): | |
for file in files: | |
if file.endswith(".npz"): | |
pathpart = root.replace("./bark/assets/prompts", "") | |
name = os.path.join(pathpart, file[:-4]) | |
if name.startswith("/") or name.startswith("\\"): | |
name = name[1:] | |
speakers_list.append(name) | |
speakers_list = sorted(speakers_list, key=lambda x: x.lower()) | |
speakers_list.insert(0, 'None') | |
print(f'Launching {APPTITLE} Server') | |
# Create Gradio Blocks | |
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(f"### [{APPTITLE}](https://github.com/KevinWang676/Bark-Voice-Cloning)") | |
with gr.Column(): | |
gr.HTML(create_version_html(), elem_id="versions") | |
with gr.Tab("Clone Voice"): | |
with gr.Row(): | |
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath") | |
#transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...") | |
with gr.Row(): | |
with gr.Column(): | |
initialname = "/home/user/app/bark/assets/prompts/file" | |
output_voice = gr.Textbox(label="Filename of trained Voice (do not change the initial name)", lines=1, placeholder=initialname, value=initialname) | |
with gr.Column(): | |
tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) | |
with gr.Row(): | |
clone_voice_button = gr.Button("Create Voice") | |
with gr.Row(): | |
dummy = gr.Text(label="Progress") | |
npz_file = gr.File(label=".npz file") | |
speakers_list.insert(0, npz_file) # add prompt | |
with gr.Tab("TTS"): | |
with gr.Row(): | |
with gr.Column(): | |
placeholder = "Enter text here." | |
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder) | |
with gr.Column(): | |
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) | |
batchcount = gr.Number(label="Batch count", precision=0, value=1) | |
with gr.Row(): | |
with gr.Column(): | |
examples = [ | |
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:", | |
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪", | |
"And now — a picture of a larch [laughter]", | |
""" | |
WOMAN: I would like an oatmilk latte please. | |
MAN: Wow, that's expensive! | |
""", | |
"""<?xml version="1.0"?> | |
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" | |
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | |
xsi:schemaLocation="http://www.w3.org/2001/10/synthesis | |
http://www.w3.org/TR/speech-synthesis/synthesis.xsd" | |
xml:lang="en-US"> | |
<voice name="/v2/en_speaker_9">Look at that drunk guy!</voice> | |
<voice name="/v2/en_speaker_3">Who is he?</voice> | |
<voice name="/v2/en_speaker_9">WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.</voice> | |
<voice name="/v2/en_speaker_3">Oh my God [laughs] he is still celebrating</voice> | |
</speak>""" | |
] | |
examples = gr.Examples(examples=examples, inputs=input_text) | |
with gr.Column(): | |
convert_to_ssml_button = gr.Button("Convert Input Text to SSML") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)") | |
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice") | |
with gr.Column(): | |
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative") | |
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative") | |
with gr.Row(): | |
with gr.Column(): | |
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True) | |
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"] | |
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False) | |
with gr.Column(): | |
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability") | |
with gr.Row(): | |
with gr.Column(): | |
tts_create_button = gr.Button("Generate") | |
with gr.Column(): | |
hidden_checkbox = gr.Checkbox(visible=False) | |
button_stop_generation = gr.Button("Stop generation") | |
with gr.Row(): | |
output_audio = gr.Audio(label="Generated Audio", type="filepath") | |
with gr.Tab("Swap Voice"): | |
with gr.Row(): | |
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) | |
swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) | |
with gr.Column(): | |
speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice") | |
swap_batchcount = gr.Number(label="Batch count", precision=0, value=1) | |
with gr.Row(): | |
swap_voice_button = gr.Button("Swap Voice") | |
with gr.Row(): | |
output_swap = gr.Audio(label="Generated Audio", type="filepath") | |
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings) | |
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text) | |
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio) | |
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click]) | |
swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap) | |
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=[dummy, npz_file]) | |
restart_server = False | |
try: | |
barkgui.queue().launch(show_error=True) | |
except: | |
restart_server = True | |
run_server = False | |
try: | |
while restart_server == False: | |
time.sleep(1.0) | |
except (KeyboardInterrupt, OSError): | |
print("Keyboard interruption in main thread... closing server.") | |
run_server = False | |
barkgui.close() | |