from cProfile import label import dataclasses from distutils.command.check import check from doctest import Example import gradio as gr import os import sys import numpy as np import logging import torch import pytorch_seed import time from xml.sax import saxutils from bark.api import generate_with_settings from bark.api import save_as_prompt from util.settings import Settings #import nltk from bark import SAMPLE_RATE from cloning.clonevoice import clone_voice from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode from scipy.io.wavfile import write as write_wav from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml from datetime import datetime from tqdm.auto import tqdm from util.helper import create_filename, add_id3_tag from swap_voice import swap_voice_from_audio from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics from training.train import training_prepare_files, train settings = Settings('config.yaml') def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)): # Chunk the text into smaller pieces then combine the generated audio # generation settings if selected_speaker == 'None': selected_speaker = None voice_name = selected_speaker if text == None or len(text) < 1: if selected_speaker == None: raise gr.Error('No text entered!') # Extract audio data from speaker if no text and speaker selected voicedata = _load_history_prompt(voice_name) audio_arr = codec_decode(voicedata["fine_prompt"]) result = create_filename(settings.output_folder_path, "None", "extract",".wav") save_wav(audio_arr, result) return result if batchcount < 1: batchcount = 1 silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) # quarter second of silence silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence use_last_generation_as_history = "Use last generation as history" in complete_settings save_last_generation = "Save generation as Voice" in complete_settings for l in range(batchcount): currentseed = seed if seed != None and seed > 2**32 - 1: logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random") currentseed = None if currentseed == None or currentseed <= 0: currentseed = np.random.default_rng().integers(1, 2**32 - 1) assert(0 < currentseed and currentseed < 2**32) progress(0, desc="Generating") full_generation = None all_parts = [] complete_text = "" text = text.lstrip() if is_ssml(text): list_speak = create_clips_from_ssml(text) prev_speaker = None for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)): selected_speaker = clip[0] # Add pause break between speakers if i > 0 and selected_speaker != prev_speaker: all_parts += [silencelong.copy()] prev_speaker = selected_speaker text = clip[1] text = saxutils.unescape(text) if selected_speaker == "None": selected_speaker = None print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") complete_text += text with pytorch_seed.SavedRNG(currentseed): audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) currentseed = torch.random.initial_seed() if len(list_speak) > 1: filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") save_wav(audio_array, filename) add_id3_tag(filename, text, selected_speaker, currentseed) all_parts += [audio_array] else: texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length) for i, text in tqdm(enumerate(texts), total=len(texts)): print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") complete_text += text if quick_generation == True: with pytorch_seed.SavedRNG(currentseed): audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) currentseed = torch.random.initial_seed() else: full_output = use_last_generation_as_history or save_last_generation if full_output: full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True) else: audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) # Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format # audio_array = (audio_array * 32767).astype(np.int16) if len(texts) > 1: filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") save_wav(audio_array, filename) add_id3_tag(filename, text, selected_speaker, currentseed) if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True): # save to npz voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz") save_as_prompt(voice_name, full_generation) if use_last_generation_as_history: selected_speaker = voice_name all_parts += [audio_array] # Add short pause between sentences if text[-1] in "!?.\n" and i > 1: all_parts += [silenceshort.copy()] # save & play audio result = create_filename(settings.output_folder_path, currentseed, "final",".wav") save_wav(np.concatenate(all_parts), result) # write id3 tag with text truncated to 60 chars, as a precaution... add_id3_tag(result, complete_text, selected_speaker, currentseed) return result def save_wav(audio_array, filename): write_wav(filename, SAMPLE_RATE, audio_array) def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt): np.savez_compressed( filename, semantic_prompt=semantic_prompt, coarse_prompt=coarse_prompt, fine_prompt=fine_prompt ) def on_quick_gen_changed(checkbox): if checkbox == False: return gr.CheckboxGroup.update(visible=True) return gr.CheckboxGroup.update(visible=False) def delete_output_files(checkbox_state): if checkbox_state: outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path) if os.path.exists(outputs_folder): purgedir(outputs_folder) return False # https://stackoverflow.com/a/54494779 def purgedir(parent): for root, dirs, files in os.walk(parent): for item in files: # Delete subordinate files filespec = os.path.join(root, item) os.unlink(filespec) for item in dirs: # Recursively perform this operation for subordinate directories purgedir(os.path.join(root, item)) def convert_text_to_ssml(text, selected_speaker): return build_ssml(text, selected_speaker) def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)): if selected_step == prepare_training_list[0]: prepare_semantics_from_text() else: prepare_wavs_from_semantics() return None def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)): training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt") train("./training/data/", save_model_epoch, max_epochs) return None def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker): settings.selected_theme = themes settings.server_name = input_server_name settings.server_port = input_server_port settings.server_share = input_server_public settings.input_text_desired_length = input_desired_len settings.input_text_max_length = input_max_len settings.silence_sentence = input_silence_break settings.silence_speaker = input_silence_speaker settings.save() def restart(): global restart_server restart_server = True def create_version_html(): python_version = ".".join([str(x) for x in sys.version_info[0:3]]) versions_html = f""" python: {python_version}  •  torch: {getattr(torch, '__long_version__',torch.__version__)}  •  gradio: {gr.__version__} """ return versions_html logger = logging.getLogger(__name__) APPTITLE = "Bark UI Enhanced v0.7" autolaunch = False if len(sys.argv) > 1: autolaunch = "-autolaunch" in sys.argv if torch.cuda.is_available() == False: os.environ['BARK_FORCE_CPU'] = 'True' logger.warning("No CUDA detected, fallback to CPU!") print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}') print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}') print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}') print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}') print(f'autolaunch={autolaunch}\n\n') #print("Updating nltk\n") #nltk.download('punkt') print("Preloading Models\n") preload_models() available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] tokenizer_language_list = ["de","en", "pl"] prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"] seed = -1 server_name = settings.server_name if len(server_name) < 1: server_name = None server_port = settings.server_port if server_port <= 0: server_port = None global run_server global restart_server run_server = True while run_server: # Collect all existing speakers/voices in dir speakers_list = [] for root, dirs, files in os.walk("./bark/assets/prompts"): for file in files: if file.endswith(".npz"): pathpart = root.replace("./bark/assets/prompts", "") name = os.path.join(pathpart, file[:-4]) if name.startswith("/") or name.startswith("\\"): name = name[1:] speakers_list.append(name) speakers_list = sorted(speakers_list, key=lambda x: x.lower()) speakers_list.insert(0, 'None') print(f'Launching {APPTITLE} Server') # Create Gradio Blocks with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui: with gr.Row(): with gr.Column(): gr.Markdown(f"### [{APPTITLE}](https://github.com/C0untFloyd/bark-gui)") with gr.Column(): gr.HTML(create_version_html(), elem_id="versions") with gr.Tab("TTS"): with gr.Row(): with gr.Column(): placeholder = "Enter text here." input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder) with gr.Column(): seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) batchcount = gr.Number(label="Batch count", precision=0, value=1) with gr.Row(): with gr.Column(): examples = [ "Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:", "♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪", "And now — a picture of a larch [laughter]", """ WOMAN: I would like an oatmilk latte please. MAN: Wow, that's expensive! """, """ Look at that drunk guy! Who is he? WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him. Oh my God [laughs] he is still celebrating """ ] examples = gr.Examples(examples=examples, inputs=input_text) with gr.Column(): convert_to_ssml_button = gr.Button("Convert Input Text to SSML") with gr.Row(): with gr.Column(): gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)") speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice") with gr.Column(): text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative") waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative") with gr.Row(): with gr.Column(): quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True) settings_checkboxes = ["Use last generation as history", "Save generation as Voice"] complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False) with gr.Column(): eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability") with gr.Row(): with gr.Column(): tts_create_button = gr.Button("Generate") with gr.Column(): hidden_checkbox = gr.Checkbox(visible=False) button_stop_generation = gr.Button("Stop generation") with gr.Row(): output_audio = gr.Audio(label="Generated Audio", type="filepath") with gr.Tab("Swap Voice"): with gr.Row(): swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath") with gr.Row(): with gr.Column(): swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) with gr.Column(): speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice") swap_batchcount = gr.Number(label="Batch count", precision=0, value=1) with gr.Row(): swap_voice_button = gr.Button("Swap Voice") with gr.Row(): output_swap = gr.Audio(label="Generated Audio", type="filepath") with gr.Tab("Clone Voice"): with gr.Row(): input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath") #transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...") with gr.Row(): with gr.Column(): initialname = "Custom_Voice" output_voice = gr.Textbox(label="Filename of trained Voice", lines=1, placeholder=initialname, value=initialname) with gr.Column(): tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) with gr.Row(): clone_voice_button = gr.Button("Create Voice") with gr.Row(): dummy = gr.Text(label="Progress") npz_file = gr.File(label=".npz file") with gr.Tab("Training Data Prepare"): gr.Markdown("This tab should be used to generate the training dataset. For Step 1 put some books into the inputtext folder in UTF-8 Text Format.") prepare_semantics_number = gr.Number(label="Number of semantics to create", precision=0, value=3079) prepare_dropdown = gr.Dropdown(prepare_training_list, value=prepare_training_list[0], label="Prepare") training_prepare_button = gr.Button("Generate") dummytrd = gr.Text(label="Progress") with gr.Tab("Training"): with gr.Row(): gr.Markdown("This tab is used to train the actual model (language).") with gr.Row(): with gr.Column(): save_model_epoch = gr.Number(label="Auto-save model after number of epochs", precision=0, value=1) with gr.Column(): max_epochs = gr.Number(label="Train for number of epochs", precision=0, value=6) with gr.Row(): with gr.Column(): allowed_chars = ' abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=\"\':;[]{}/<>,.`~' allowedcharsfilter = gr.Textbox(label="Allowed chars for text input", lines=1, value=allowed_chars) with gr.Column(): train_button = gr.Button("Start Training") with gr.Row(): dummytrain = gr.Text(label="Progress") with gr.Tab("Settings"): with gr.Row(): themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme) with gr.Row(): input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name) input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port) share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share) with gr.Row(): input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences") input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length") with gr.Row(): input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds") input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds") with gr.Row(): button_apply_settings = gr.Button("Apply Settings") button_apply_restart = gr.Button("Restart Server") button_delete_files = gr.Button("Clear output folder") quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings) convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text) gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio) button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click]) # Javascript hack to display modal confirmation dialog js = "(x) => confirm('Are you sure? This will remove all files from output folder')" button_delete_files.click(None, None, hidden_checkbox, _js=js) hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox]) swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap) clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=[dummy, npz_file]) training_prepare_button.click(training_prepare, inputs=[prepare_dropdown, prepare_semantics_number], outputs=dummytrd) train_button.click(start_training, inputs=[save_model_epoch, max_epochs], outputs=dummytrain) button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers]) button_apply_restart.click(restart) restart_server = False try: barkgui.queue().launch(show_error=True) except: restart_server = True run_server = False try: while restart_server == False: time.sleep(1.0) except (KeyboardInterrupt, OSError): print("Keyboard interruption in main thread... closing server.") run_server = False barkgui.close()