Spaces:
No application file
No application file
File size: 2,382 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import argparse
import safetensors.torch
from diffusers import AutoencoderTiny
"""
Example - From the diffusers root directory:
Download the weights:
```sh
$ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_encoder.safetensors
$ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_decoder.safetensors
```
Convert the model:
```sh
$ python scripts/convert_tiny_autoencoder_to_diffusers.py \
--encoder_ckpt_path taesd_encoder.safetensors \
--decoder_ckpt_path taesd_decoder.safetensors \
--dump_path taesd-diffusers
```
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--encoder_ckpt_path",
default=None,
type=str,
required=True,
help="Path to the encoder ckpt.",
)
parser.add_argument(
"--decoder_ckpt_path",
default=None,
type=str,
required=True,
help="Path to the decoder ckpt.",
)
parser.add_argument(
"--use_safetensors", action="store_true", help="Whether to serialize in the safetensors format."
)
args = parser.parse_args()
print("Loading the original state_dicts of the encoder and the decoder...")
encoder_state_dict = safetensors.torch.load_file(args.encoder_ckpt_path)
decoder_state_dict = safetensors.torch.load_file(args.decoder_ckpt_path)
print("Populating the state_dicts in the diffusers format...")
tiny_autoencoder = AutoencoderTiny()
new_state_dict = {}
# Modify the encoder state dict.
for k in encoder_state_dict:
new_state_dict.update({f"encoder.layers.{k}": encoder_state_dict[k]})
# Modify the decoder state dict.
for k in decoder_state_dict:
layer_id = int(k.split(".")[0]) - 1
new_k = str(layer_id) + "." + ".".join(k.split(".")[1:])
new_state_dict.update({f"decoder.layers.{new_k}": decoder_state_dict[k]})
# Assertion tests with the original implementation can be found here:
# https://gist.github.com/sayakpaul/337b0988f08bd2cf2b248206f760e28f
tiny_autoencoder.load_state_dict(new_state_dict)
print("Population successful, serializing...")
tiny_autoencoder.save_pretrained(args.dump_path, safe_serialization=args.use_safetensors)
|