File size: 3,485 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# This code is based on https://github.com/Mathux/ACTOR.git
import torch
from ..utils import rotation_conversions as geometry


from ..models.smpl import SMPL, JOINTSTYPE_ROOT
# from .get_model import JOINTSTYPES
JOINTSTYPES = ["a2m", "a2mpl", "smpl", "vibe", "vertices"]


class Rotation2xyz:
    def __init__(self, device, dataset='amass'):
        self.device = device
        self.dataset = dataset
        self.smpl_model = SMPL().eval().to(device)

    def __call__(self, x, mask, pose_rep, translation, glob,
                 jointstype, vertstrans, betas=None, beta=0,
                 glob_rot=None, get_rotations_back=False, **kwargs):
        if pose_rep == "xyz":
            return x

        if mask is None:
            mask = torch.ones((x.shape[0], x.shape[-1]), dtype=bool, device=x.device)

        if not glob and glob_rot is None:
            raise TypeError("You must specify global rotation if glob is False")

        if jointstype not in JOINTSTYPES:
            raise NotImplementedError("This jointstype is not implemented.")

        if translation:
            x_translations = x[:, -1, :3]
            x_rotations = x[:, :-1]
        else:
            x_rotations = x

        x_rotations = x_rotations.permute(0, 3, 1, 2)
        nsamples, time, njoints, feats = x_rotations.shape

        # Compute rotations (convert only masked sequences output)
        if pose_rep == "rotvec":
            rotations = geometry.axis_angle_to_matrix(x_rotations[mask])
        elif pose_rep == "rotmat":
            rotations = x_rotations[mask].view(-1, njoints, 3, 3)
        elif pose_rep == "rotquat":
            rotations = geometry.quaternion_to_matrix(x_rotations[mask])
        elif pose_rep == "rot6d":
            rotations = geometry.rotation_6d_to_matrix(x_rotations[mask])
        else:
            raise NotImplementedError("No geometry for this one.")

        if not glob:
            global_orient = torch.tensor(glob_rot, device=x.device)
            global_orient = geometry.axis_angle_to_matrix(global_orient).view(1, 1, 3, 3)
            global_orient = global_orient.repeat(len(rotations), 1, 1, 1)
        else:
            global_orient = rotations[:, 0]
            rotations = rotations[:, 1:]

        if betas is None:
            betas = torch.zeros([rotations.shape[0], self.smpl_model.num_betas],
                                dtype=rotations.dtype, device=rotations.device)
            betas[:, 1] = beta
            # import ipdb; ipdb.set_trace()
        out = self.smpl_model(body_pose=rotations, global_orient=global_orient, betas=betas)

        # get the desirable joints
        joints = out[jointstype]

        x_xyz = torch.empty(nsamples, time, joints.shape[1], 3, device=x.device, dtype=x.dtype)
        x_xyz[~mask] = 0
        x_xyz[mask] = joints

        x_xyz = x_xyz.permute(0, 2, 3, 1).contiguous()

        # the first translation root at the origin on the prediction
        if jointstype != "vertices":
            rootindex = JOINTSTYPE_ROOT[jointstype]
            x_xyz = x_xyz - x_xyz[:, [rootindex], :, :]

        if translation and vertstrans:
            # the first translation root at the origin
            x_translations = x_translations - x_translations[:, :, [0]]

            # add the translation to all the joints
            x_xyz = x_xyz + x_translations[:, None, :, :]

        if get_rotations_back:
            return x_xyz, rotations, global_orient
        else:
            return x_xyz