Spaces:
No application file
No application file
File size: 14,919 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
#from __future__ import absolute_import
import sys
import io
import os
sys.argv = ['GPT_eval_multi.py']
# 将项目根目录添加到sys.path中
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(1, PROJECT_ROOT)
CKPT_ROOT="/cfs-datasets/public_models/motion"
from .options import option_transformer as option_trans
import sys
print(sys.path[0])
import clip
import torch
import cv2
import numpy as np
from .models import vqvae as vqvae
from .models import t2m_trans as trans
import warnings
from .visualization import plot_3d_global as plot_3d
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as mcolors
from tqdm import tqdm
from mpl_toolkits.mplot3d import Axes3D
from PIL import Image
import time
import random
warnings.filterwarnings('ignore')
from matplotlib.axes._axes import _log as matplotlib_axes_logger
matplotlib_axes_logger.setLevel('ERROR')
from math import cos,sin,radians
args = option_trans.get_args_parser()
args.dataname = 't2m'
args.resume_pth = os.path.join(CKPT_ROOT,'pretrained/VQVAE/net_last.pth')
args.resume_trans = os.path.join(CKPT_ROOT,'pretrained/VQTransformer_corruption05/net_best_fid.pth')
args.down_t = 2
args.depth = 3
args.block_size = 51
def replace_space_with_underscore(s):
return s.replace(' ', '_')
def Rz(angle):
theta=radians(angle)
return np.array([[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]])
def Rx(angle):
theta=radians(angle)
return np.array(
[[1, 0, 0],
[0 , cos(theta), -sin(theta)],
[0, sin(theta), cos(theta)]])
def generate_cuid():
timestamp = hex(int(time.time() * 1000))[2:]
random_str = hex(random.randint(0, 0xfffff))[2:]
return (timestamp + random_str).zfill(10)
def smpl_to_openpose18(smpl_keypoints):
'''
22关键点SMPL对应关系解释
[0, 2, 5, 8, 11]
这个列表表示SMPL模型中左腿的连接方式,从骨盆(0号关键点)开始,连接左大腿(2号关键点)、左小腿(5号关键点)、左脚(8号关键点)和左脚尖(11号关键点)。
[0, 1, 4, 7, 10]
这个列表表示SMPL模型中右腿的连接方式,从骨盆(0号关键点)开始,连接右大腿(1号关键点)、右小腿(4号关键点)、右脚(7号关键点)和右脚尖(10号关键点)。
[0, 3, 6, 9, 12, 15]
这个列表表示SMPL模型中躯干的连接方式,从骨盆(0号关键点)开始,连接脊柱(3号关键点)、颈部(6号关键点)、头部(9号关键点)、左肩膀(12号关键点)、右肩膀(15号关键点)。
[9, 14, 17, 19, 21]
这个列表表示SMPL模型中左臂的连接方式,从左肩膀(9号关键点)开始,连接左上臂(14号关键点)、左前臂(17号关键点)、左手腕(19号关键点)和左手(21号关键点)。
[9, 13, 16, 18, 20]
这个列表表示SMPL模型中右臂的连接方式,从右肩膀(9号关键点)开始,连接右上臂(13号关键点)、右前臂(16号关键点)、右手腕(18号关键点)和右手(20号关键点)。
目前转Openpose忽略掉了SMPL的肩膀关键点
'''
openpose_keypoints = np.zeros((18, 3))
openpose_keypoints[0] = smpl_keypoints[9] # nose
openpose_keypoints[0][1] = openpose_keypoints[0][1]+0.3 #
openpose_keypoints[1] = smpl_keypoints[6] # neck
openpose_keypoints[2] = smpl_keypoints[16] # right shoulder
openpose_keypoints[3] = smpl_keypoints[18] # right elbow
openpose_keypoints[4] = smpl_keypoints[20] # right wrist
openpose_keypoints[5] = smpl_keypoints[17] # left shoulder
openpose_keypoints[6] = smpl_keypoints[19] # left elbow
openpose_keypoints[7] = smpl_keypoints[21] # left wrist
#TODO: Experiment,将neck的关键点抬高&&将nose的关键点相对高度关系与neck保持一致
openpose_keypoints[1][0]=(openpose_keypoints[2][0]+openpose_keypoints[5][0])/2
openpose_keypoints[1][1]=(openpose_keypoints[2][1]+openpose_keypoints[5][1])/2
openpose_keypoints[1][2]=(openpose_keypoints[2][2]+openpose_keypoints[5][2])/2
openpose_keypoints[0][1] = openpose_keypoints[1][1]+0.3 #
openpose_keypoints[8] = smpl_keypoints[1] # right hip
openpose_keypoints[9] = smpl_keypoints[4] # right knee
openpose_keypoints[10] = smpl_keypoints[7] # right ankle
openpose_keypoints[11] = smpl_keypoints[2] # left hip
openpose_keypoints[12] = smpl_keypoints[5] # left knee
openpose_keypoints[13] = smpl_keypoints[8] # left ankle
#TODO: Experiment,手工指定脸部关键点测试是否能够指定身体朝向
#openpose_keypoints[0][0] = openpose_keypoints[0][0]+0.3#测试0坐标轴方向(水平向右)
#openpose_keypoints[0][2] = openpose_keypoints[0][2]#测试2坐标轴方向(向外
#openpose_keypoints[0][1] = openpose_keypoints[0][1]+0.5#测试1坐标轴方向(垂直向上
openpose_keypoints[14] = openpose_keypoints[0] # right eye
openpose_keypoints[14][1]=openpose_keypoints[14][1]+0.05
openpose_keypoints[14][0]=openpose_keypoints[14][0]+0.3*(openpose_keypoints[2][0]-openpose_keypoints[1][0])
openpose_keypoints[14][2]=openpose_keypoints[14][2]+0.3*(openpose_keypoints[2][2]-openpose_keypoints[1][2])
openpose_keypoints[15] = openpose_keypoints[0] # left eye
openpose_keypoints[15][1]=openpose_keypoints[15][1]+0.05
openpose_keypoints[15][0]=openpose_keypoints[15][0]+0.3*(openpose_keypoints[5][0]-openpose_keypoints[1][0])
openpose_keypoints[15][2]=openpose_keypoints[15][2]+0.3*(openpose_keypoints[5][2]-openpose_keypoints[1][2])
openpose_keypoints[16] = openpose_keypoints[0] # right ear
openpose_keypoints[16][0]=openpose_keypoints[16][0]+0.7*(openpose_keypoints[2][0]-openpose_keypoints[1][0])
openpose_keypoints[16][2]=openpose_keypoints[16][2]+0.7*(openpose_keypoints[2][2]-openpose_keypoints[1][2])
openpose_keypoints[17] = openpose_keypoints[0] # left ear
openpose_keypoints[17][0]=openpose_keypoints[17][0]+0.7*(openpose_keypoints[5][0]-openpose_keypoints[1][0])
openpose_keypoints[17][2]=openpose_keypoints[17][2]+0.7*(openpose_keypoints[5][2]-openpose_keypoints[1][2])
return openpose_keypoints
# TODO: debug only, need to be deleted before unload
## load clip model and datasets
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root=CKPT_ROOT) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
print("loaded CLIP model")
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=1024,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=9,
n_head=16,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.eval()
trans_encoder.cuda()
mean = torch.from_numpy(np.load(os.path.join(CKPT_ROOT,'./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/mean.npy'))).cuda()
std = torch.from_numpy(np.load(os.path.join(CKPT_ROOT,'./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/std.npy'))).cuda()
def get_open_pose(text,height,width,save_path,video_length):
CKPT_ROOT = os.path.dirname(os.path.abspath(__file__))
clip_text=[text]
print(f"Motion Prompt: {text}")
# cuid=generate_cuid()
# print(f"Motion Generation cuid: {cuid}")
# clip_text = ["the person jump and spin twice,then running straght and sit down. "] #支持单个token的生成
# change the text here
text = clip.tokenize(clip_text, truncate=False).cuda()
feat_clip_text = clip_model.encode_text(text).float()
index_motion = trans_encoder.sample(feat_clip_text[0:1], False)
pred_pose = net.forward_decoder(index_motion)
from utils.motion_process import recover_from_ric
pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22)
xyz = pred_xyz.reshape(1, -1, 22, 3)
np.save('motion.npy', xyz.detach().cpu().numpy())
pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(),clip_text, ['smpl.gif'])
res=xyz.detach().cpu().numpy()
points_3d_list=res[0]
frame_num=points_3d_list.shape[0]
open_pose_list=np.array(points_3d_list)
print("The total SMPL sequence shape is : "+str(open_pose_list.shape))
max_val = np.max(open_pose_list, axis=(0, 1))
min_val = np.min(open_pose_list, axis=(0, 1))
print("三维坐标在坐标系上的最大值:", max_val)
print("三维坐标在坐标系上的最小值:", min_val)
check= smpl_to_openpose18(open_pose_list[0]) # 18个关键点
print("********SMPL_2_OpenPose_List(14/18)********")
print(check)
print("*************************")
print(f"Total Frame Number: {frame_num}")
img_list=[]
for step in tqdm(range(0,frame_num)):
# 生成图像
dpi=84
fig =plt.figure(figsize=(width/dpi, height/dpi), dpi=dpi)
ax = fig.add_subplot(111, projection='3d')
limits=2
ax.set_xlim(-limits*0.7, limits*0.7)
ax.set_ylim(0, limits*1.5)#上下
ax.set_zlim(0, limits*1.5)# 前后
ax.grid(b=False)
#ax.dist = 1
ax.set_box_aspect([1.4, 1.5, 1.5],zoom=3.5)# 坐标轴比例 TODO:这个比例可能有问题,会出现超出坐标范围的bug
# 关键点坐标,每行包含(x, y, z)
keypoints = smpl_to_openpose18(open_pose_list[step]) # 18个关键点
# 运动学链 目前只用到body部分
kinematic_chain = [(0, 1), (1, 2), (2, 3), (3, 4), (1, 5), (5, 6), (6, 7), (1, 8), (8, 9), (9, 10), (1, 11), (11, 12), (12, 13), (0, 14), (14, 16), (0, 15), (15, 17)]
#kinematic_chain = [(0, 1), (1, 2), (2, 3), (3, 4), (1, 5), (5, 6), (6, 7), (1, 8), (8, 9), (9, 10), (1, 11), (11, 12), (12, 13)]
# 颜色RGB
colors = [(0, 0, 255), (0, 255, 255), (0, 255, 0), (255, 0, 0), (255, 0, 255), (255, 192, 203), (0, 165, 255), (19, 69, 139), (173, 216, 230), (34, 139, 34), (0, 0, 128), (184, 134, 11), (139, 0, 139), (0, 100, 0), (0, 255, 255), (0, 255, 0), (216, 191, 216), (255, 255, 224)]
#colors=[(0, 0, 255), (0, 255, 255), (0, 255, 0), (255, 0, 0), (255, 0, 255), (255, 192, 203), (0, 165, 255), (19, 69, 139), (173, 216, 230), (34, 139, 34), (0, 0, 128), (184, 134, 11), (139, 0, 139), (0, 100, 0)]
#18点
joint_colors=[(255,0,0),(255,85,0),(255,170,0),(255,255,0),(170,255,0),(85,255,0),(0,255,0),(0,255,85),(0,255,170),(0,255,255),(0,170,255),(0,85,255),(0,0,255),(85,0,255),(170,0,255),(255,0,255),(255,0,170),(255,0,85),(255,0,0)]
#14点主干
#joint_colors=[(255,0,0),(255,85,0),(255,170,0),(255,255,0),(170,255,0),(85,255,0),(0,255,0),(0,255,85),(0,255,170),(0,255,255),(0,170,255),(0,85,255),(0,0,255),(85,0,255),(170,0,255)]
#运动链连线是joint颜色的60%
#plt颜色在0-1之间
rgb_color2=[]
joint_rgb_color2=[]
kinematic_chain_rgb_color2=[]
for color in joint_colors:
joint_rgb_color2.append(tuple([x/255 for x in color]))
kinematic_chain_rgb_color2.append(tuple([x*0.6/255 for x in color])) #运动链连线是joint颜色的60%
# 可视化结果
for i in range(0,18):
# 绘制关键点
ax.scatter(keypoints[i][0], keypoints[i][1], keypoints[i][2], s=50, c=joint_rgb_color2[i], marker='o')
# 绘制运动学链
for j in range(len(kinematic_chain)):
if kinematic_chain[j][1] == i:
ax.plot([keypoints[kinematic_chain[j][0]][0], keypoints[kinematic_chain[j][1]][0]], [keypoints[kinematic_chain[j][0]][1], keypoints[kinematic_chain[j][1]][1]], [keypoints[kinematic_chain[j][0]][2], keypoints[kinematic_chain[j][1]][2]], c=kinematic_chain_rgb_color2[i], linewidth=5)
# 调整视角
ax.view_init(elev=110, azim=-90)
plt.axis('off')
# 保存图片
# 将图像数据输出为图像数组
if not os.path.exists(save_path):
os.makedirs(save_path)
image_tmp_path=str(f"{save_path}/{str(step)}.jpg")
plt.savefig(os.path.join(CKPT_ROOT,image_tmp_path))#RGB
img=cv2.imread(os.path.join(CKPT_ROOT,image_tmp_path))
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
img_list.append(img)
res=[]
if len(img_list)>=video_length:
key_frame_sample_step=int(len(img_list)/video_length)
else:
print("ERROR: video length is too long")
key_frame_sample_step=1
for i in range(0,len(img_list),key_frame_sample_step):
res.append(img_list[i])
return res
def offline_get_open_pose(text,motion_text,height,width,save_path):
#motion_text=text
clip_text=[text]
print(f"Motion Prompt: {text}")
cuid=generate_cuid()
print(f"Motion Generation cuid: {cuid}")
# clip_text = ["the person jump and spin twice,then running straght and sit down. "] #支持单个token的生成
# change the text here
text = clip.tokenize(clip_text, truncate=False).cuda()
feat_clip_text = clip_model.encode_text(text).float()
index_motion = trans_encoder.sample(feat_clip_text[0:1], False)
pred_pose = net.forward_decoder(index_motion)
from utils.motion_process import recover_from_ric
pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22)
xyz = pred_xyz.reshape(1, -1, 22, 3)
res=xyz.detach().cpu().numpy()
np.save(f'{save_path}/{replace_space_with_underscore(motion_text)}.npy', res)
pose_vis = plot_3d.draw_to_batch(res,clip_text, ['smpl.gif'])
if __name__ == "__main__":
text="walk around, jump, run straght."
pose = get_open_pose(text,512,512)
#pdb.set_trace()
|