Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import math | |
import unittest | |
import torch | |
from diffusers import UNet2DModel | |
from diffusers.utils import logging | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
slow, | |
torch_all_close, | |
torch_device, | |
) | |
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
logger = logging.get_logger(__name__) | |
enable_full_determinism() | |
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNet2DModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 3 | |
sizes = (32, 32) | |
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
return {"sample": noise, "timestep": time_step} | |
def input_shape(self): | |
return (3, 32, 32) | |
def output_shape(self): | |
return (3, 32, 32) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"block_out_channels": (32, 64), | |
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"), | |
"up_block_types": ("AttnUpBlock2D", "UpBlock2D"), | |
"attention_head_dim": 3, | |
"out_channels": 3, | |
"in_channels": 3, | |
"layers_per_block": 2, | |
"sample_size": 32, | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_mid_block_attn_groups(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["norm_num_groups"] = 16 | |
init_dict["add_attention"] = True | |
init_dict["attn_norm_num_groups"] = 8 | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
self.assertIsNotNone( | |
model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not." | |
) | |
self.assertEqual( | |
model.mid_block.attentions[0].group_norm.num_groups, | |
init_dict["attn_norm_num_groups"], | |
"Mid block Attention group norm does not have the expected number of groups.", | |
) | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.to_tuple()[0] | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNet2DModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 4 | |
sizes = (32, 32) | |
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
return {"sample": noise, "timestep": time_step} | |
def input_shape(self): | |
return (4, 32, 32) | |
def output_shape(self): | |
return (4, 32, 32) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"sample_size": 32, | |
"in_channels": 4, | |
"out_channels": 4, | |
"layers_per_block": 2, | |
"block_out_channels": (32, 64), | |
"attention_head_dim": 32, | |
"down_block_types": ("DownBlock2D", "DownBlock2D"), | |
"up_block_types": ("UpBlock2D", "UpBlock2D"), | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_from_pretrained_hub(self): | |
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertEqual(len(loading_info["missing_keys"]), 0) | |
model.to(torch_device) | |
image = model(**self.dummy_input).sample | |
assert image is not None, "Make sure output is not None" | |
def test_from_pretrained_accelerate(self): | |
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) | |
model.to(torch_device) | |
image = model(**self.dummy_input).sample | |
assert image is not None, "Make sure output is not None" | |
def test_from_pretrained_accelerate_wont_change_results(self): | |
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True` | |
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) | |
model_accelerate.to(torch_device) | |
model_accelerate.eval() | |
noise = torch.randn( | |
1, | |
model_accelerate.config.in_channels, | |
model_accelerate.config.sample_size, | |
model_accelerate.config.sample_size, | |
generator=torch.manual_seed(0), | |
) | |
noise = noise.to(torch_device) | |
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) | |
arr_accelerate = model_accelerate(noise, time_step)["sample"] | |
# two models don't need to stay in the device at the same time | |
del model_accelerate | |
torch.cuda.empty_cache() | |
gc.collect() | |
model_normal_load, _ = UNet2DModel.from_pretrained( | |
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False | |
) | |
model_normal_load.to(torch_device) | |
model_normal_load.eval() | |
arr_normal_load = model_normal_load(noise, time_step)["sample"] | |
assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3) | |
def test_output_pretrained(self): | |
model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update") | |
model.eval() | |
model.to(torch_device) | |
noise = torch.randn( | |
1, | |
model.config.in_channels, | |
model.config.sample_size, | |
model.config.sample_size, | |
generator=torch.manual_seed(0), | |
) | |
noise = noise.to(torch_device) | |
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) | |
with torch.no_grad(): | |
output = model(noise, time_step).sample | |
output_slice = output[0, -1, -3:, -3:].flatten().cpu() | |
# fmt: off | |
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) | |
# fmt: on | |
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3)) | |
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNet2DModel | |
main_input_name = "sample" | |
def dummy_input(self, sizes=(32, 32)): | |
batch_size = 4 | |
num_channels = 3 | |
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device) | |
return {"sample": noise, "timestep": time_step} | |
def input_shape(self): | |
return (3, 32, 32) | |
def output_shape(self): | |
return (3, 32, 32) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"block_out_channels": [32, 64, 64, 64], | |
"in_channels": 3, | |
"layers_per_block": 1, | |
"out_channels": 3, | |
"time_embedding_type": "fourier", | |
"norm_eps": 1e-6, | |
"mid_block_scale_factor": math.sqrt(2.0), | |
"norm_num_groups": None, | |
"down_block_types": [ | |
"SkipDownBlock2D", | |
"AttnSkipDownBlock2D", | |
"SkipDownBlock2D", | |
"SkipDownBlock2D", | |
], | |
"up_block_types": [ | |
"SkipUpBlock2D", | |
"SkipUpBlock2D", | |
"AttnSkipUpBlock2D", | |
"SkipUpBlock2D", | |
], | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_from_pretrained_hub(self): | |
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) | |
self.assertIsNotNone(model) | |
self.assertEqual(len(loading_info["missing_keys"]), 0) | |
model.to(torch_device) | |
inputs = self.dummy_input | |
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device) | |
inputs["sample"] = noise | |
image = model(**inputs) | |
assert image is not None, "Make sure output is not None" | |
def test_output_pretrained_ve_mid(self): | |
model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") | |
model.to(torch_device) | |
batch_size = 4 | |
num_channels = 3 | |
sizes = (256, 256) | |
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) | |
with torch.no_grad(): | |
output = model(noise, time_step).sample | |
output_slice = output[0, -3:, -3:, -1].flatten().cpu() | |
# fmt: off | |
expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056]) | |
# fmt: on | |
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) | |
def test_output_pretrained_ve_large(self): | |
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") | |
model.to(torch_device) | |
batch_size = 4 | |
num_channels = 3 | |
sizes = (32, 32) | |
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) | |
with torch.no_grad(): | |
output = model(noise, time_step).sample | |
output_slice = output[0, -3:, -3:, -1].flatten().cpu() | |
# fmt: off | |
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) | |
# fmt: on | |
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) | |
def test_forward_with_norm_groups(self): | |
# not required for this model | |
pass | |