Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import torch | |
from diffusers import ( | |
IFImg2ImgPipeline, | |
IFImg2ImgSuperResolutionPipeline, | |
IFInpaintingPipeline, | |
IFInpaintingSuperResolutionPipeline, | |
IFPipeline, | |
IFSuperResolutionPipeline, | |
) | |
from diffusers.models.attention_processor import AttnAddedKVProcessor | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
from . import IFPipelineTesterMixin | |
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): | |
pipeline_class = IFPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
def get_dummy_components(self): | |
return self._get_dummy_components() | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_save_load_optional_components(self): | |
self._test_save_load_optional_components() | |
def test_save_load_float16(self): | |
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder | |
super().test_save_load_float16(expected_max_diff=1e-1) | |
def test_attention_slicing_forward_pass(self): | |
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) | |
def test_save_load_local(self): | |
self._test_save_load_local() | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical( | |
expected_max_diff=1e-2, | |
) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) | |
class IFPipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_all(self): | |
# if | |
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) | |
pipe_2 = IFSuperResolutionPipeline.from_pretrained( | |
"DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None | |
) | |
# pre compute text embeddings and remove T5 to save memory | |
pipe_1.text_encoder.to("cuda") | |
prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda") | |
del pipe_1.tokenizer | |
del pipe_1.text_encoder | |
gc.collect() | |
pipe_1.tokenizer = None | |
pipe_1.text_encoder = None | |
pipe_1.enable_model_cpu_offload() | |
pipe_2.enable_model_cpu_offload() | |
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) | |
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) | |
self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) | |
pipe_1.remove_all_hooks() | |
pipe_2.remove_all_hooks() | |
# img2img | |
pipe_1 = IFImg2ImgPipeline(**pipe_1.components) | |
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components) | |
pipe_1.enable_model_cpu_offload() | |
pipe_2.enable_model_cpu_offload() | |
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) | |
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) | |
self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) | |
pipe_1.remove_all_hooks() | |
pipe_2.remove_all_hooks() | |
# inpainting | |
pipe_1 = IFInpaintingPipeline(**pipe_1.components) | |
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components) | |
pipe_1.enable_model_cpu_offload() | |
pipe_2.enable_model_cpu_offload() | |
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) | |
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) | |
self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) | |
def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): | |
# pipeline 1 | |
_start_torch_memory_measurement() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
output = pipe_1( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
num_inference_steps=2, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (64, 64, 3) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 13 * 10**9 | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" | |
) | |
assert_mean_pixel_difference(image, expected_image) | |
# pipeline 2 | |
_start_torch_memory_measurement() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) | |
output = pipe_2( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=image, | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 4 * 10**9 | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" | |
) | |
assert_mean_pixel_difference(image, expected_image) | |
def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): | |
# pipeline 1 | |
_start_torch_memory_measurement() | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
output = pipe_1( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=image, | |
num_inference_steps=2, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (64, 64, 3) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 10 * 10**9 | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" | |
) | |
assert_mean_pixel_difference(image, expected_image) | |
# pipeline 2 | |
_start_torch_memory_measurement() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) | |
output = pipe_2( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=image, | |
original_image=original_image, | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 4 * 10**9 | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" | |
) | |
assert_mean_pixel_difference(image, expected_image) | |
def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): | |
# pipeline 1 | |
_start_torch_memory_measurement() | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) | |
mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
output = pipe_1( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=image, | |
mask_image=mask_image, | |
num_inference_steps=2, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (64, 64, 3) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 10 * 10**9 | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" | |
) | |
assert_mean_pixel_difference(image, expected_image) | |
# pipeline 2 | |
_start_torch_memory_measurement() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) | |
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) | |
mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device) | |
output = pipe_2( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=image, | |
mask_image=mask_image, | |
original_image=original_image, | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 4 * 10**9 | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" | |
) | |
assert_mean_pixel_difference(image, expected_image) | |
def _start_torch_memory_measurement(): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |